OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 30039–30053

Omnidirectional reflection from generalized Fibonacci quasicrystals

Alberto G. Barriuso, Juan J. Monzón, Teresa Yonte, Angel Felipe, and Luis L. Sánchez-Soto  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 30039-30053 (2013)
http://dx.doi.org/10.1364/OE.21.030039


View Full Text Article

Enhanced HTML    Acrobat PDF (2493 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We determine the optimal thicknesses for which omnidirectional reflection from generalized Fibonacci quasicrystals occurs. By capitalizing on the idea of wavelength- and angle-averaged reflectance, we assess in a consistent way the performance of the different systems. Our results indicate that some of these aperiodic arrangements can largely over-perform the conventional photonic crystals as omnidirectional reflection is concerned.

© 2013 Optical Society of America

OCIS Codes
(310.4165) Thin films : Multilayer design
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(160.5293) Materials : Photonic bandgap materials
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: October 1, 2013
Revised Manuscript: November 14, 2013
Manuscript Accepted: November 15, 2013
Published: November 27, 2013

Citation
Alberto G. Barriuso, Juan J. Monzón, Teresa Yonte, Angel Felipe, and Luis L. Sánchez-Soto, "Omnidirectional reflection from generalized Fibonacci quasicrystals," Opt. Express 21, 30039-30053 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-30039


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2 (Princeton University, 2008).
  2. K. Buscha, G. von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, and M. Wegenerd, “Periodic nanostructures for photonics,” Phys. Rep.444, 101–202 (2007). [CrossRef]
  3. B. Kramer and A. MacKinnon, “Localization: Theory and experiment,” Rep. Prog. Phys.56, 1469–1564 (1993). [CrossRef]
  4. M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics7, 197–204 (2013). [CrossRef]
  5. A. Lagendijk and B. A. van Tiggelen, “Resonant multiple scattering of light,” Phys. Rep.270, 143–215 (1996). [CrossRef]
  6. B. A. van Tiggelen, “Transverse diffusion of light in Faraday-active media,” Phys. Rev. Lett.75, 422–424 (1995). [CrossRef] [PubMed]
  7. W. Steurer and D. Sutter-Widmer, “Photonic and phononic quasicrystals,” J. Phys. D40, R229–R247 (2007). [CrossRef]
  8. A. Poddubny and E. Ivchenko, “Photonic quasicrystalline and aperiodic structures,” Physica E42, 1871–1895 (2010). [CrossRef]
  9. L. Dal Negro and S. V. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser Photon. Rev.6, 178–218 (2012). [CrossRef]
  10. P. J. Steinhardt and S. Ostlund, The Physics of Quasicrystals (World Scientific, 1987).
  11. M. Senechal, Quasicrystals and Geometry (Cambridge University, 1995).
  12. C. Janot, Quasicrystals: A Primer (Oxford University, 2012).
  13. Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics7, 177–187 (2013). [CrossRef]
  14. E. Maciá, “The role of aperiodic order in science and technology,” Rep. Prog. Phys.69, 397–441 (2006). [CrossRef]
  15. E. Maciá, Aperiodic Structures in Condensed Matter: Fundamentals and Applications (CRC, 2009).
  16. R. Merlin, K. Bajema, R. Clarke, F. Y. Juang, and P. K. Bhattacharya, “Quasiperiodic GaAs-AlAs heterostructures,” Phys. Rev. Lett.55, 1768–1770 (1985). [CrossRef] [PubMed]
  17. M. Kohmoto, L. P. Kadanoff, and C. Tang, “Localization problem in one dimension: Mapping and escape,” Phys. Rev. Lett.50, 1870–1872 (1983). [CrossRef]
  18. M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization in optics: Quasiperiodic media,” Phys. Rev. Lett.58, 2436–2438 (1987). [CrossRef] [PubMed]
  19. N.-H. Liu, “Propagation of light waves in Thue-Morse dielectric multilayers,” Phys. Rev. B55, 3543–3547 (1997). [CrossRef]
  20. S. Tamura and F. Nori, “Transmission and frequency spectra of acoustic phonons in Thue-Morse superlattices,” Phys. Rev. B40, 9790–9801 (1989). [CrossRef]
  21. M. Kolář, M. K. Ali, and F. Nori, “Generalized Thue-Morse chains and their physical properties,” Phys. Rev. B43, 1034–1047 (1991). [CrossRef]
  22. J. M. Luck, “Cantor spectra and scaling of gap widths in deterministic aperiodic systems,” Phys. Rev. B39, 5834–5849 (1989). [CrossRef]
  23. C. Sibilia, I. S. Nefedov, M. Scalora, and M. Bertolotti, “Electromagnetic mode density for finite quasi-periodic structures,” J. Opt. Soc. Am. B15, 1947–1952 (1998). [CrossRef]
  24. E. Cojocaru, “Forbidden gaps in finite periodic and quasi-periodic Cantor-like dielectric multilayers at normal incidence,” Appl. Opt.40, 6319–6326 (2001). [CrossRef]
  25. A. V. Lavrinenko, S. V. Zhukovsky, K. S. Sandomirski, and S. V. Gaponenko, “Propagation of classical waves in nonperiodic media: Scaling properties of an optical cantor filter,” Phys. Rev. E65, 036621 (2002). [CrossRef]
  26. S. V. Zhukovsky, A. V. Lavrinenko, and S. V. Gaponenko, “Spectral scalability as a result of geometrical self-similarity in fractal multilayers,” Europhys. Lett.66, 455–461 (2004). [CrossRef]
  27. G. Gumbs and M. K. Ali, “Dynamical maps, Cantor spectra, and localization for Fibonacci and related quasiperiodic lattices,” Phys. Rev. Lett.60, 1081–1084 (1988). [CrossRef] [PubMed]
  28. F. Nori and J. P. Rodríguez, “Acoustic and electronic properties of one-dimensional quasicrystals,” Phys. Rev. B34, 2207–2211 (1986). [CrossRef]
  29. E. Maciá and F. Domínguez-Adame, “Physical nature of critical wave functions in Fibonacci systems,” Phys. Rev. Lett.76, 2957–2960 (1996). [CrossRef] [PubMed]
  30. T. Fujiwara, M. Kohmoto, and T. Tokihiro, “Multifractal wave functions on a Fibonacci lattice,” Phys. Rev. B40, 7413–7416 (1989). [CrossRef]
  31. J. A. Monsoriu, F. R. Villatoro, M. J. Marín, J. Pérez, and L. Monreal, “Quantum fractal superlattices,” Am. J. Phys.74, 831–836 (2006). [CrossRef]
  32. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  33. J. Lekner, Theory of Reflection (Kluwer, 1987).
  34. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282, 1679–1682 (1998). [CrossRef] [PubMed]
  35. J. P. Dowling, “Mirror on the wall: you’re omnidirectional after all?” Science282, 1841–1842 (1998). [CrossRef]
  36. E. Yablonovitch, “Engineered omnidirectional external-reflectivity spectra from one-dimensional layered interference filters,” Opt. Lett.23, 1648–1649 (1998). [CrossRef]
  37. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, “All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control,” J. Lightwave Technol.17, 2018–2024 (1999). [CrossRef]
  38. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A68, 25–28 (1999). [CrossRef]
  39. J. Lekner, “Omnidirectional reflection by multilayer dielectric mirrors,” J. Opt. A2, 349–352 (2000). [CrossRef]
  40. D. Lusk, I. Abdulhalim, and F. Placido, “Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal,” Opt. Commun.198, 273–279 (2001). [CrossRef]
  41. F. Qiu, R. W. Peng, X. Q. Huang, X. F. Hu, M. Wang, A. Hu, S. S. Jiang, and D. Feng, “Omnidirectional reflection of electromagnetic waves on Thue-Morse dielectric multilayers,” Europhys. Lett.68, 658–663 (2004). [CrossRef]
  42. T. Yonte, J. J. Monzón, A. Felipe, and L. L. Sánchez-Soto, “Optimizing omnidirectional reflection by multilayer mirrors,” J. Opt. A6, 127–131 (2004). [CrossRef]
  43. A. G. Barriuso, J. J. Monzón, L. L. Sánchez-Soto, and A. Felipe, “Integral merit function for broadband omnidirectional mirrors,” Appl. Opt.46, 2903–2906 (2007). [CrossRef] [PubMed]
  44. A. G. Barriuso, J. J. Monzón, L. L. Sánchez-Soto, and A. Felipe, “Comparing omnidirectional reflection from periodic and quasiperiodic one-dimensional photonic crystals,” Opt. Express13, 3913–3920 (2005). [CrossRef] [PubMed]
  45. M. Holzer, “Three classes of one-dimensional, two-tile Penrose tilings and the Fibonacci Kronig-Penney model as a generic case,” Phys. Rev. B38, 1709–1720 (1988). [CrossRef]
  46. M. Severin, M. Dulea, and R. Riklund, “Periodic and quasiperiodic wavefunctions in a class of one-dimensional quasicrystals: an analytical treatment,” J. Phys. Condens. Matter1, 8851–8858 (1989). [CrossRef]
  47. M. Dulea, M. Severin, and R. Riklund, “Transmission of light through deterministic aperiodic non-Fibonaccian multilayers,” Phys. Rev. B42, 3680–3689 (1990). [CrossRef]
  48. A. Chakrabarti and S. N. Karmakar, “Renormalization-group method for exact Green’s functions of self-similar lattices: Application to generalized Fibonacci chains,” Phys. Rev. B44, 896–899 (1991). [CrossRef]
  49. X. Fu, Y. Liu, P. Zhou, and W. Sritrakool, “Perfect self-similarity of energy spectra and gap-labeling properties in one-dimensional Fibonacci-class quasilattices,” Phys. Rev. B55, 2882–2889 (1997). [CrossRef]
  50. X. Wang, U. Grimm, and M. Schreiber, “Trace and antitrace maps for aperiodic sequences: Extensions and applications,” Phys. Rev. B62, 14020–14031 (2000). [CrossRef]
  51. Y. Chen, X. Yang, Q. Guo, and S. Lan, “Second-harmonic generation in GF(m, 1) ferroelectric superlattices,” J. Phys. Condens. Matter18, 2587–2600 (2006). [CrossRef]
  52. S. Thiem, M. Schreiber, and U. Grimm, “Wave packet dynamics, ergodicity, and localization in quasiperiodic chains,” Phys. Rev. B80, 214203 (2009). [CrossRef]
  53. S. Thiem and M. Schreiber, “Photonic properties of metallic-mean quasiperiodic chains,” Eur. Phys. J. B76, 339–345 (2010). [CrossRef]
  54. Z. Zhang, P. Tong, J. Gong, and B. Li, “Wave packet dynamics in one-dimensional linear and nonlinear generalized Fibonacci lattices,” Phys. Rev. E83, 056205 (2011). [CrossRef]
  55. S. Thiem, M. Schreiber, and U. Grimm, “Light transmission through metallic-mean quasiperiodic stacks with oblique incidence,” Philos. Mag.91, 2801–2810 (2011). [CrossRef]
  56. C. H. O. Costa and M. S. Vasconcelos, “Band gaps and transmission spectra in generalized Fibonacci σ(p, q) one-dimensional magnonic quasicrystals,” J. Phys. Condens. Matter25, 286002 (2013). [CrossRef]
  57. V. W. Spinadel, “The metallic means family and multifractal spectra,” Nonlinear Anal.36, 721–745 (1999). [CrossRef]
  58. M. Lothaire, Combinatorics on Words,2 (Cambridge University, 1997). [CrossRef]
  59. M. Queffélec, Substitutional Dynamics Systems – Spectral Analysis (Springer, 1987).
  60. R. A. Dunlap, The Golden Ratio and Fibonacci Numbers (World Scientific, 1997).
  61. E. Bombieri and J. E. Taylor, “Which distributions of matter diffract? an initial investigation,” J. Phys. Colloq.47, 19–28 (1986). [CrossRef]
  62. E. Bombieri and J. Taylor, “Quasicrystals, tilings, and algebraic number theory,” Contemp. Math.64, 241–264 (1987). [CrossRef]
  63. C. Godrèche and J. M. Luck, “Indexing the diffraction spectrum of a non-Pisot self-similar structure,” Phys. Rev. B45, 176–185 (1992). [CrossRef]
  64. C. D. Meyer, Matrix Analysis and Applied Linear Algebra (Society for Industrial and Applied Mathematics, 2000). [CrossRef]
  65. M. Severin and R. Riklund, “Using the Fourier spectrum to classify families of generalised extensions of the Fibonaccian lattice,” J. Phys. Condens. Matter1, 5607–5612 (1989). [CrossRef]
  66. Z. Cheng and R. Savit, “Structure factor of substitutional sequences,” J. Stat. Phys.60, 383–393 (1990). [CrossRef]
  67. J. Bellissard, A. Bovier, and J. M. Ghez, “Gap labelling theorems for one-dimensional discrete Schrödinger operators,” Rev. Math. Phys.4, 1–37 (1992). [CrossRef]
  68. M. Dulea, M. Johansson, and R. Riklund, “Localization of electrons and electromagnetic waves in a deterministic aperiodic system,” Phys. Rev. B45, 105–114 (1992). [CrossRef]
  69. G. Y. Oh and M. H. Lee, “Band-structural and Fourier-spectral properties of one-dimensional generalized Fibonacci lattices,” Phys. Rev. B48, 12465–12477 (1993). [CrossRef]
  70. L. L. Sánchez-Soto, J. J. Monzón, A. G. Barriuso, and J. F. Cariñena, “The transfer matrix: A geometrical perspective,” Phys. Rep.513, 191–227 (2012). [CrossRef]
  71. J. F. Tang and Q. Zheng, “Automatic design of optical thin-film systems: merit function and numerical optimization method,” J. Opt. Soc. Am.72, 1522–1528 (1982). [CrossRef]
  72. J. A. Dobrowolski, F. C. Ho, A. Belkind, and V. A. Koss, “Merit functions for more effective thin film calculations,” Appl. Opt.28, 2824–2831 (1989). [CrossRef] [PubMed]
  73. A. Premoli and M. L. Rastello, “Minimax refining of wideband antireflection coatings for wide angular incidence,” Appl. Opt.33, 2018–2024 (1994). [CrossRef] [PubMed]
  74. D. T. F. Marple, “Refractive index of ZnTe, ZnSe, and CdTe,” J. Appl. Phys.35, 539–542 (1964). [CrossRef]
  75. W. H. Southwell, “Omnidirectional mirror design with quarter-wave dielectric stacks,” Appl. Opt.38, 5464–5467 (1999). [CrossRef]
  76. S. V. Zhukovsky and S. V. Gaponenko, “Constraints on transmission, dispersion, and density of states in dielectric multilayers and stepwise potential barriers with an arbitrary layer arrangement,” Phys. Rev. E77, 046602 (2008). [CrossRef]
  77. V. Grigoriev and F. Biancalana, “Exact analytical representations for broadband transmission properties of quarter-wave multilayers,” Opt. Lett.36, 3774–3776 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited