OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 30065–30073

Suppressed quantum-confined Stark effect in InGaN-based LEDs with nano-sized patterned sapphire substrates

Vin-Cent Su, Po-Hsun Chen, Ray-Ming Lin, Ming-Lun Lee, Yao-Hong You, Chung-I Ho, Yi-Chi Chen, Wei-Fan Chen, and Chieh-Hsiung Kuan  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 30065-30073 (2013)
http://dx.doi.org/10.1364/OE.21.030065


View Full Text Article

Enhanced HTML    Acrobat PDF (5886 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper demonstrates that quantum-confined Stark effect (QCSE) within the multiple quantum wells (MQWs) can be suppressed by the growths of InGaN-based light-emitting diodes (LEDs) on the nano-sized patterned c-plane sapphire substrates (PCSSs) with reducing the space. The efficiency droop is also determined by QCSE. As verified by the experimentally measured data and the ray-tracing simulation results, the suppressed efficiency droop for the InGaN-based LED having the nano-sized PCSS with a smaller space of 200nm can be acquired due to the weaker function of the QCSE within the MQWs as a result of the smaller polarization fields coming from the lower compressive strain in the corresponding epitaxial layers.

© 2013 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(230.0230) Optical devices : Optical devices
(230.3670) Optical devices : Light-emitting diodes

ToC Category:
Optical Devices

History
Original Manuscript: October 8, 2013
Revised Manuscript: November 20, 2013
Manuscript Accepted: November 20, 2013
Published: November 27, 2013

Citation
Vin-Cent Su, Po-Hsun Chen, Ray-Ming Lin, Ming-Lun Lee, Yao-Hong You, Chung-I Ho, Yi-Chi Chen, Wei-Fan Chen, and Chieh-Hsiung Kuan, "Suppressed quantum-confined Stark effect in InGaN-based LEDs with nano-sized patterned sapphire substrates," Opt. Express 21, 30065-30073 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-30065


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Noda and M. Fujita, “Light-emitting diodes: Photonic crystal efficiency boost,” Nat. Photonics3(3), 129–130 (2009). [CrossRef]
  2. S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science281(5379), 956–961 (1998). [CrossRef] [PubMed]
  3. H. Gotoh, T. Tawara, Y. Kobayashi, N. Kobayashi, and T. Saitoh, “Piezoelectric effects on photoluminescence properties in 10-nm-thick InGaN quantum wells,” Appl. Phys. Lett.83(23), 4791–4793 (2003). [CrossRef]
  4. D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (2021) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Disp. Technol.9, 190–198 (2013). [CrossRef]
  5. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012). [CrossRef]
  6. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature406(6798), 865–868 (2000). [CrossRef] [PubMed]
  7. H. Masui, S. Nakamura, S. P. DenBaars, and U. K. Mishra, “Nonpolar and Semipolar III-Nitride Light-Emitting Diodes: Achievements and Challenges,” IEEE Trans. Electron. Dev.57(1), 88–100 (2010). [CrossRef]
  8. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]
  9. R. A. Arif, Y.-K. Ee, and N. Tansu, “Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes,” Appl. Phys. Lett.91(9), 091110 (2007). [CrossRef]
  10. J. Zhang and N. Tansu, “Optical Gain and Laser Characteristics of InGaN Quantum Wells on Ternary InGaN Substrates,” IEEE Photonics Journal5(2), 2600111 (2013). [CrossRef]
  11. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett.91(18), 183507 (2007). [CrossRef]
  12. L. Y. Chen, H. H. Huang, C. H. Chang, Y. Y. Huang, Y. R. Wu, and J. J. Huang, “Investigation of the strain induced optical transition energy shift of the GaN nanorod light emitting diode arrays,” Opt. Express19(S4), A900–A907 (2011). [CrossRef] [PubMed]
  13. Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu, and J. J. Huang, “Optical properties of the partially strain relaxed ingan/gan light-emitting diodes induced by p-Type GaN surface texturing,” IEEE Electron Device Lett.32(2), 182–184 (2011). [CrossRef]
  14. J. H. Son and J. L. Lee, “Strain engineering for the solution of efficiency droop in InGaN/GaN light-emitting diodes,” Opt. Express18(6), 5466–5471 (2010). [CrossRef] [PubMed]
  15. X. H. Huang, J. P. Liu, J. J. Kong, H. Yang, and H. B. Wang, “High-efficiency InGaN-based LEDs grown on patterned sapphire substrates,” Opt. Express19(S4Suppl 4), A949–A955 (2011). [CrossRef] [PubMed]
  16. H. C. Lin, H. H. Liu, G. Y. Lee, J. I. Chyi, C. M. Lu, C. W. Chao, T. C. Wang, C. J. Chang, and S. W. S. Chi, “Effects of lens shape on GaN grown on microlens patterned sapphire substrates by metallorganic chemical vapor deposition,” J. Electrochem. Soc.157(3), H304–H307 (2010). [CrossRef]
  17. X. H. Huang, J. P. Liu, Y. Y. Fan, J. J. Kong, H. Yang, and H. B. Wang, “Effect of Patterned Sapphire Substrate Shape on Light Output Power of GaN-Based LEDs,” IEEE Photon. Technol. Lett.23(14), 944–946 (2011). [CrossRef]
  18. Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009). [CrossRef]
  19. Y.-K. Ee, X.-H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire,” J. Cryst. Growth312(8), 1311–1315 (2010). [CrossRef]
  20. Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011). [CrossRef]
  21. H. Yu, L. K. Lee, T. Jung, and P. C. Ku, “Photoluminescence study of semipolar {101} InGaN/GaN multiple quantum wells grown by selective area epitaxy,” Appl. Phys. Lett.90(14), 141906 (2007). [CrossRef]
  22. Y. Hu, Lijun Wang, F. Liu, J. Zhang, J. Liu, and Z. Wang, “Micro-Raman study on chirped InGaAs–InAlAs superlattices,” Phys. Status Solidi A, 210(11), 2364–2368 (2013).
  23. S. K. Tripathy, G. Xu, X. Mu, Y. J. Ding, M. Jamil, R. A. Arif, N. Tansu, and J. B. Khurgin, “Phonon-assisted ultraviolet anti-Stokes photoluminescence from GaN film grown on Si (111) substrate,” Appl. Phys. Lett.93(20), 201107 (2008). [CrossRef]
  24. C. Y. Cho, M. K. Kwon, I. K. Park, S. H. Hong, J. J. Kim, S. E. Park, S. T. Kim, and S. J. Park, “High-efficiency light-emitting diode with air voids embedded in lateral epitaxially overgrown GaN using a metal mask,” Opt. Express19(S4Suppl 4), A943–A948 (2011). [CrossRef] [PubMed]
  25. S. M. Kim, H. S. Oh, J. H. Baek, K. H. Lee, G. Y. Jung, J. H. Song, H. J. Kim, B. J. Ahn, D. Yanqun, and J. H. Song, “Effects of Patterned Sapphire Substrates on Piezoelectric Field in Blue-Emitting InGaN Multiple Quantum Wells,” IEEE Electron Device Lett.31(8), 842–844 (2010). [CrossRef]
  26. J. H. Lee, J. T. Oh, Y. C. Kim, and J. H. Lee, “Stress reduction and enhanced extraction efficiency of GaN-based LED grown on cone-shape-patterned sapphire,” IEEE Photon. Technol. Lett.20(18), 1563–1565 (2008). [CrossRef]
  27. J. H. Cheng, Y. S. Wu, W. C. Liao, and B. W. Lin, “Improved crystal quality and performance of GaN-based light-emitting diodes by decreasing the slanted angle of patterned sapphire,” Appl. Phys. Lett.96(5), 051109 (2010). [CrossRef]
  28. P. Zhu, G. Liu, J. Zhang, and N. Tansu, “FDTD analysis on extraction efficiency of GaN light-emitting diodes with microsphere arrays,” J. Disp. Technol.9(5), 317–323 (2013). [CrossRef]
  29. M. F. Schubert, S. Chhajed, J. K. Kim, E. Fred Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes,” Appl. Phys. Lett.91, 231114 (2007).
  30. J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, C. Sone, and Y. Park, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett.94(1), 011113 (2009). [CrossRef]
  31. M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett.93(4), 041102 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited