OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 30074–30081

Controlled mode tuning in 1-D ‘RIM’ plasmonic crystal trench cavities probed with coupled optical emitters

Tsung-li Liu, Kasey J. Russell, Shanying Cui, and Evelyn L. Hu  »View Author Affiliations

Optics Express, Vol. 21, Issue 24, pp. 30074-30081 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2308 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a design of plasmonic cavities that consists of two sets of 1-D plasmonic crystal reflectors on a plasmonic trench waveguide. A 'reverse image mold' (RIM) technique was developed to pattern high-resolution silver trenches and to embed emitters at the cavity field maximum, and FDTD simulations were performed to analyze the frequency response of the fabricated devices. Distinct cavity modes were observed from the photoluminescence spectra of the organic dye embedded within these cavities. The cavity geometry facilitates tuning of the modes through a change in cavity dimensions. Both the design and the fabrication technique presented could be extended to making trench waveguide-based plasmonic devices and circuits.

© 2013 Optical Society of America

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: October 10, 2013
Revised Manuscript: November 16, 2013
Manuscript Accepted: November 18, 2013
Published: November 27, 2013

Tsung-li Liu, Kasey J. Russell, Shanying Cui, and Evelyn L. Hu, "Controlled mode tuning in 1-D ‘RIM’ plasmonic crystal trench cavities probed with coupled optical emitters," Opt. Express 21, 30074-30081 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003). [CrossRef] [PubMed]
  2. P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett.50(24), 1903–1906 (1983). [CrossRef]
  3. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007). [CrossRef] [PubMed]
  4. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006). [CrossRef] [PubMed]
  5. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  6. K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics6(7), 459–462 (2012). [CrossRef]
  7. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  8. J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005). [CrossRef]
  9. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006). [CrossRef] [PubMed]
  10. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004). [CrossRef] [PubMed]
  11. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97(5), 053002 (2006). [CrossRef] [PubMed]
  12. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95(11), 117401 (2005). [CrossRef] [PubMed]
  13. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005). [CrossRef] [PubMed]
  14. E. J. Vesseur, F. J. García de Abajo, and A. Polman, “Modal decomposition of surface--plasmon whispering gallery resonators,” Nano Lett.9(9), 3147–3150 (2009). [CrossRef] [PubMed]
  15. C. L. C. Smith, B. Desiatov, I. Goykmann, I. Fernandez-Cuesta, U. Levy, and A. Kristensen, “Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography,” Opt. Express20(5), 5696–5706 (2012). [CrossRef] [PubMed]
  16. E. J. R. Vesseur and A. Polman, “Controlled spontaneous emission in plasmonic whispering gallery antennas,” Appl. Phys. Lett.99(23), 231112 (2011). [CrossRef]
  17. P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009). [CrossRef] [PubMed]
  18. M. J. Loboda and G. A. Toskey, “Understanding hydrogen silsesquioxane-based dielectric films processing,” Solid State Technol.41, 5 (1998).
  19. A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29(6), 06FF01 (2011). [CrossRef]
  20. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003). [CrossRef] [PubMed]
  21. K. J. Russell, K. Y.-M. Yeung, and E. L. Hu, “Measuring the mode volume of plasmonic nanocavities using coupled optical emitters,” Phys. Rev. B85(24), 245445 (2012). [CrossRef]
  22. S. Zhang, Y.-S. Park, Y.-M. Liu, T. Zentgraf, and X. Zhang, “Far-field measurement of ultra-small plasmonic mode volume,” Opt. Express18(6), 6048–6055 (2010). [CrossRef] [PubMed]
  23. Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Opt. Express19(15), 13831–13838 (2011). [CrossRef] [PubMed]
  24. Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, and X. Luo, “Characteristics of plasmonic filters with a notch located along rectangular resonators,” Plasmonics8(2), 167–171 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited