OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 30082–30106

A new model for the vertical spectral diffuse attenuation coefficient of downwelling irradiance in turbid coastal waters: validation with in situ measurements

Arthi Simon and Palanisamy Shanmugam  »View Author Affiliations

Optics Express, Vol. 21, Issue 24, pp. 30082-30106 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4555 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The vertical spectral diffuse attenuation coefficient of Kd is an important optical property related to the penetration and availability of light underwater, which is of fundamental interest in studies of ocean physics and biology. Models developed in the recent decades were mainly based on theoretical analyses and numerical (radiative transfer) simulations to estimate this property in optically deep waters, thus leaving inadequate knowledge of its variability at multiple depths and wavelengths, covering a wide range of solar incident geometry, in turbid coastal waters. In the present study, a new model is developed to quantify the vertical, spatial and temporal variability of Kd at multiple wavelengths and to quantify its dependence with respect to solar incident geometry under differing sky conditions. Thus, the new model is derived as a function of inherent optical properties (IOPs – absorption a and backscattering bb), solar zenith angle and depth parameters. The model results are rigorously evaluated using time-series and discrete in situ data from clear and turbid coastal waters. The Kd values derived from the new model are found to agree with measured data within the mean relative error 0.02~6.24% and R2 0.94~0.99. By contrast, the existing models have large errors when applied to the same data sets. Statistical results of the new model for the vertical spectral distribution of Kd in clear oceanic waters (for different solar zenith and in-water conditions) are also good when compared to those of the existing models. These results suggest that the new model can provide an improved interpretation about the variation of the vertical spectral diffuse attenuation coefficient of downwelling irradiance, which will have important implications for ocean physics, biogeochemical cycles and underwater applications in both relatively clear and turbid coastal waters.

© 2013 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.5850) Scattering : Scattering, particles
(010.1350) Atmospheric and oceanic optics : Backscattering

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: October 10, 2013
Revised Manuscript: October 30, 2013
Manuscript Accepted: October 31, 2013
Published: November 27, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Arthi Simon and Palanisamy Shanmugam, "A new model for the vertical spectral diffuse attenuation coefficient of downwelling irradiance in turbid coastal waters: validation with in situ measurements," Opt. Express 21, 30082-30106 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. G. Jerlov, Marine Optics (Elsevier, 1976).
  2. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. (Cambridge, 1994), pp. 64–70.
  3. J. Marra, C. Langdon, and C. A. Knudson, “Primary production, water column changes, and the demise of a phaeocystis bloom at the marine light-mixed layers site (59°N, 21°W) in the northeast Atlantic Ocean,” J. Geophys. Res.100(C4), 6633–6644 (1995). [CrossRef]
  4. C. R. McClain, K. Arrigo, K. S. Tai, and D. Turk, “Observations and simulations of physical and biological processes at ocean weather station P, 1951–1980,” J. Geophys. Res.101(C2), 3697–3713 (1996). [CrossRef]
  5. G. C. Chang and T. D. Dickey, “Coastal ocean optical influences on solar transmission and radiant heating rate,” J. Geophys. Res.109, C01020 (2004), doi:. [CrossRef]
  6. M. R. Lewis, M.-E. Carr, G. C. Feldman, W. Esaias, and C. McMclain, “Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean,” Nature347(6293), 543–545 (1990). [CrossRef]
  7. A. Morel and D. Antoine, “Heating rate within the upper ocean in relation to its bio-optical state,” J. Phys. Oceanogr.24(7), 1652–1665 (1994). [CrossRef]
  8. Z. P. Lee, K. P. Du, and R. Arnone, “A model for diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res.110, C02016 (2005), doi:. [CrossRef]
  9. Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res.118, 1–15 (2013), doi:. [CrossRef]
  10. T. Surya Prakash and P. Shanmugam, “A robust algorithm to determine diffuse attenuation coefficient of downwelling irradiance from satellite data in coastal oceanic waters,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., in press.
  11. J. T. O. Kirk, “The vertical attenuation of irradiance as a function of the optical properties of the water,” Limnol. Oceanogr.48(1), 9–17 (2003). [CrossRef]
  12. J. H. Nielsen and E. Aas, “Relation between solar elevation and the vertical attenuation coefficient of irradiance in Oslofjorden,” Univ. of Oslo Rep. 31 (Univ. of Oslo, 1977).
  13. K. S. Baker and R. C. Smith, “Quasi-inherent characteristics of the diffuse attenuation coefficient for irradiance,” Proc. SPIE208, 60–63 (1980). [CrossRef]
  14. X. Zheng, T. Dickey, and G. Chang, “Variability of the downwelling diffuse attenuation coefficient with consideration of inelastic scattering,” Appl. Opt.41(30), 6477–6488 (2002). [CrossRef] [PubMed]
  15. H. R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?” Limnol. Oceanogr.34(8), 1389–1409 (1989). [CrossRef]
  16. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994)
  17. X. Pan and R. C. Zimmerman, “Modeling the vertical distributions of downwelling plane irradiance and diffuse attenuation coefficient in optically deep waters,” J. Geophys. Res.115, C08016 (2010), doi:. [CrossRef]
  18. J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr.36(3), 455–467 (1991), doi:. [CrossRef]
  19. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. II Bidirectional aspects,” Appl. Opt.32(33), 6864–6879 (1993), doi:. [CrossRef] [PubMed]
  20. C. C. Liu, K. L. Carder, R. L. Miller, and J. E. Ivey, “Fast and accurate model of underwater scalar irradiance,” Appl. Opt.41(24), 4962–4974 (2002), doi:. [CrossRef] [PubMed]
  21. V. B. Sundarabalan, P. Shanmugam, and S. S. Manjusha, “Radiative transfer modeling of upwelling light field in coastal waters,” J. Quant. Spectrosc. Radiat. Transfer121, 30–44 (2013). [CrossRef]
  22. W. S. Pegau and J. R. V. Zaneveld, “Temperature dependent absorption of water in the red and near infrared portions of the spectrum,” Limnol. Oceanogr.38(1), 188–192 (1993). [CrossRef]
  23. W. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: Dependence on temperature and salinity,” Appl. Opt.36(24), 6035–6046 (1997). [CrossRef] [PubMed]
  24. J. R. V. Zaneveld, J. C. Kitchen, and C. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE2258, 44–55 (1994). [CrossRef]
  25. T. Ohde and H. Siegel, “Derivation of immersion factors for the hyperspectral TriOS radiance sensor,” J. Opt. A, Pure Appl. Opt.5(3), L12–L14 (2003). [CrossRef]
  26. R. W. Austin and T. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, 1980), pp. 239–256.
  27. J. L. Mueller and C. C. Trees, “Revised SeaWiFS prelaunch algorithm for diffuse attenuation coefficient K(490),” in Case Studies for SeaWiFS Calibration and Validation, Part 4, NASA/TM-1997–104566, S. B. Hooker and E. R. Firestone, eds. (2003), 41, pp. 18–21.
  28. H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt.14(2), 417–427 (1975). [CrossRef] [PubMed]
  29. J. R. V. Zaneveld, “An asymptotic closure theory for irradiance in the sea and its inversion to obtain the inherent optical properties,” Limnol. Oceanogr.34(8), 1442–1452 (1989), doi:. [CrossRef]
  30. J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr.29(2), 350–356 (1984). [CrossRef]
  31. A. Morel and H. Loisel, “Apparent optical properties of oceanic water: Dependence on the molecular scattering contribution,” Appl. Opt.37(21), 4765–4776 (1998). [CrossRef] [PubMed]
  32. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200-800 nm),” Appl. Opt.20(2), 177–184 (1981). [CrossRef] [PubMed]
  33. S. Sathyendranath and T. Platt, “The spectral irradiance field at the surface and in the interior of the ocean: A model for applications in oceanography and remote sensing,” J. Geophys. Res.93(C8), 9270–9280 (1988). [CrossRef]
  34. S. Sathyendranath, T. Platt, C. M. Caverhill, R. E. Warnock, and M. R. Lewis, “Remote sensing of oceanic primary production: Computations using a spectral model,” Deep Sea Res. Part II Top. Stud. Oceanogr.36, 431–453 (1989).
  35. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. I. A semianalytical model,” Appl. Opt.37(27), 6329–6338 (1998). [CrossRef] [PubMed]
  36. R. H. Stavn and A. D. Weidemann, “Shape factors, two-flow models, and the problem of irradiance inversion in estimating optical parameters,” Limnol. Oceanogr.34(8), 1426–1441 (1989). [CrossRef]
  37. C. L. Gallegos, D. L. Correll, R. H. Stavn, and A. D. Weidemann, “Modeling spectral diffuse attenuation, absorption, and scattering coefficients in a turbid estuary,” Limnol. Oceanogr.35(7), 1486–1502 (1990). [CrossRef]
  38. J. Berwald, D. Stramski, C. D. Mobley, and D. A. Kiefer, “Effect of Raman scattering on the average cosine and diffuse attenuation coefficient of irradiance in the ocean,” Limnol. Oceanogr.43(4), 564–576 (1998). [CrossRef]
  39. A. Herlevi, “A study of scattering, backscattering and a hyperspectral reflectance model for boreal water,” Geophysica38(1–2), 113–132 (2002).
  40. M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009), doi:. [CrossRef]
  41. Y.-H. Ahn and P. Shanmugam, “Derivation and analysis of the fluorescence algorithms to estimate phytoplankton pigment concentrations in optically complex coastal waters,” J. Opt. A Pure Appl. Opt.9, 352–362 (2007). [CrossRef]
  42. R. H. Stavn, “Effects of Raman scattering across the visible spectrum in clear ocean water: A Monte Carlo study,” Appl. Opt.32(33), 6853–6863 (1993). [CrossRef] [PubMed]
  43. D. P. Häder, H. D. Kumar, R. C. Smith, and R. C. Worrest, “Effects of solar UV radiation on aquatic ecosystems and interactions with climate change,” Photochem. Photobiol. Sci.6(3), 267–285 (2007). [CrossRef] [PubMed]
  44. K. Gao, E. W. Helbling, D. P. Hader, and D. A. Hutchins, “Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming,” Mar. Ecol. Prog. Ser.470, 167–189 (2012). [CrossRef]
  45. M. A. Moran and R. G. Zepp, “Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter,” Limnol. Oceanogr.42(6), 1307–1316 (1997). [CrossRef]
  46. P. Shanmugam, V. B. Sundarabalan, Y. H. Ahn, and J. H. Ryu, “A new inversion model to retrieve the particulate backscattering in coastal/ocean waters,” IEEE Trans. Geosci. Remote Sens.49(6), 2463–2475 (2011). [CrossRef]
  47. A. Vasilkov, N. Krotkov, J. Herman, C. McClain, K. Arrigo, and W. Robinson, “Global mapping of underwater UV irradiances and DNA-weighted exposures using Total Ozone Mapping Spectrometer and Sea-viewing Wide Field-of-view Sensor data products,” J. Geophys. Res. 106, 27,205–27,219 (2001). [CrossRef]
  48. C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. Part II Top. Stud. Oceanogr.51(1–3), 5–42 (2004), doi:. [CrossRef]
  49. W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. H. Evans, F. E. Hoge, H. R. Gordon, W. M. Balch, R. Letelier, and P. J. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Rem. Sens.36(4), 1250–1265 (1998), doi:. [CrossRef]
  50. J. L. Mueller, “SeaWiFS algorithm for the diffuse attenuation coefficient, K(490), using water-leaving radiances at 490 and 555 nm, in Sea-WiFS Postlaunch Calibration and Validation Analyses,” in SeaWiFS Post Launch Technical Report Series, Part 3, Report 11, S. B. Hooker and E. R. Firestone, eds. (2002), pp. 24–27.
  51. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters),” J. Geophys. Res.93(C9), 10,749–10,768 (1988), doi:. [CrossRef]
  52. A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ.111(1), 69–88 (2007), doi:. [CrossRef]
  53. S. R. Signorini, S. B. Hooker, and C. R. McClain, “Bio-optical and geochemical properties of the south Atlantic subtropical gyre,” NASA/TM-2003–212253 (2003), pp. 1–43.
  54. J. J. Simpson and T. D. Dickey, “The relationship between downward irradiance and upper Ocean structure,” J. Phys. Oceanogr.11(3), 309–323 (1981). [CrossRef]
  55. Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt.41(27), 5755–5772 (2002). [CrossRef] [PubMed]
  56. T. T. Bannister, “Model of the mean cosine of underwater radiance and estimation of underwater scalar irradiance,” Limnol. Oceanogr.37(4), 773–780 (1992). [CrossRef]
  57. J. Berwald, D. Stramski, C. D. Mobley, and D. A. Kiefer, “Influences of absorption and scattering on vertical changes in the average cosine of the underwater light field,” Limnol. Oceanogr.40(8), 1347–1357 (1995). [CrossRef]
  58. N. J. McCormick, “Mathematical models for the mean cosine of irradiance and the diffuse attenuation coefficient,” Limnol. Oceanogr.40(5), 1013–1018 (1995). [CrossRef]
  59. M. R. Lewis, M.-E. Carr, G. C. Feldman, W. Esaias, and C. McClain, “Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean,” Nature347(6293), 543–545 (1990). [CrossRef]
  60. J. C. Ohlmann, D. A. Siegel, and C. Gautier, “Ocean mixed layer radiant heating and solar penetration: A global analysis,” J. Clim.9(10), 2265–2280 (1996). [CrossRef]
  61. T. Platt, S. Sathyendranath, C. M. Caverhill, and M. Lewis, “Ocean primary production and available light: Further algorithms for remote sensing,” Deep Sea Res.35(6), 855–879 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited