OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 30107–30113

Mie scattering as a cascade of Fano resonances

Mikhail V. Rybin, Kirill B. Samusev, Ivan S. Sinev, George Semouchkin, Elena Semouchkina, Yuri S. Kivshar, and Mikhail F. Limonov  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 30107-30113 (2013)
http://dx.doi.org/10.1364/OE.21.030107


View Full Text Article

Enhanced HTML    Acrobat PDF (1444 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We reveal that the resonant Mie scattering by high-index dielectric nanoparticles can be presented through cascades of Fano resonances. We employ the exact solution of Maxwell’s equations and demonstrate that the Lorenz-Mie coefficients of the Mie problem can be expressed generically as infinite series of Fano functions as they describe interference between the background radiation originated from an incident wave and narrow-spectrum Mie scattering modes that lead to Fano resonances.

© 2013 Optical Society of America

OCIS Codes
(260.5740) Physical optics : Resonance
(290.4020) Scattering : Mie theory

ToC Category:
Scattering

History
Original Manuscript: October 14, 2013
Revised Manuscript: November 7, 2013
Manuscript Accepted: November 9, 2013
Published: November 27, 2013

Citation
Mikhail V. Rybin, Kirill B. Samusev, Ivan S. Sinev, George Semouchkin, Elena Semouchkina, Yuri S. Kivshar, and Mikhail F. Limonov, "Mie scattering as a cascade of Fano resonances," Opt. Express 21, 30107-30113 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-30107


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Soukoulis, ed., Photonic Band Gap Materials, Vol. 315 of NATO ASI Series E (Springer, 1996). [CrossRef]
  2. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matt.17, 3717–3734 (2005). [CrossRef]
  3. P. Garcia, M. Ibisate, R. Sapienza, D. Wiersma, and C. López, “Mie resonances to tailor random lasers,” Phys. Rev. A80, 013833 (2009). [CrossRef]
  4. M. V. Rybin, P. V. Kapitanova, D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Fano resonances in antennas: General control over radiation patterns,” Phys. Rev. B88, 205106 (2013). [CrossRef]
  5. S. Foteinopoulou, J. Vigneron, and C. Vandenbem, “Optical near-field excitations on plasmonic nanoparticle-based structures,” Opt. Express15, 4253–4267 (2007). [CrossRef] [PubMed]
  6. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express14, 9988–9999 (2006). [CrossRef] [PubMed]
  7. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B67, 205402 (2003). [CrossRef]
  8. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998). [CrossRef]
  9. M. F. Limonov and R. M. De La Rue, eds., Optical Properties of Photonic Structures: Interplay of Order and Disorder (CRC Press, 2012). [CrossRef]
  10. S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing,” Nat. Photonics2, 429–432 (2008). [CrossRef]
  11. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124, 1866–1878 (1961). [CrossRef]
  12. V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, “Tunneling into a single magnetic atom: Spectroscopic evidence of the Kondo resonance,” Science280, 567–569 (1998). [CrossRef] [PubMed]
  13. M. F. Limonov, A. I. Rykov, S. Tajima, and A. Yamanaka, “Raman scattering study on fully oxygenated YBa2CuO7single crystals: x-y anisotropy in the superconductivity-induced effects,” Phys. Rev. Lett.80, 825–828 (1998). [CrossRef]
  14. M. Limonov, S. Lee, S. Tajima, and A. Yamanaka, “Superconductivity-induced resonant raman scattering in multilayer high-Tc superconductors,” Phys. Rev. B66, 054509 (2002). [CrossRef]
  15. M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett.100, 043903 (2008). [CrossRef] [PubMed]
  16. M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett.103, 023901 (2009). [CrossRef] [PubMed]
  17. M. V. Rybin, A. B. Khanikaev, M. Inoue, A. K. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Bragg scattering induces Fano resonance in photonic crystals,” Photonics Nanostruct. Fundam. Appl.8, 86–93 (2010). [CrossRef]
  18. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82, 2257–2298 (2010). [CrossRef]
  19. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010). [CrossRef]
  20. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328, 1135–1138 (2010). [CrossRef] [PubMed]
  21. A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun.3, 914 (2012). [CrossRef] [PubMed]
  22. A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett.12, 6459–6463 (2012). [CrossRef] [PubMed]
  23. Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano6, 1830–1838 (2012). [CrossRef] [PubMed]
  24. M. Tribelsky, A. Miroshnichenko, and Y. Kivshar, “Unconventional Fano resonances in light scattering by small particles,” Europhys. Lett.97, 44005 (2012). [CrossRef]
  25. C. P. Burrows and W. L. Barnes, “Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays,” Opt. Express18, 3187–3198 (2010). [CrossRef] [PubMed]
  26. J.-P. Connerade and A. M. Lane, “Interacting resonances in atomic spectroscopy,” Rep. Prog. Phys.51, 1439–1478 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited