OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30126–30139

Stable locking phase limits of optically injected semiconductor lasers

Aidan Daly, Brendan Roycroft, and Brian Corbett  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 30126-30139 (2013)
http://dx.doi.org/10.1364/OE.21.030126


View Full Text Article

Enhanced HTML    Acrobat PDF (1517 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The stability of an optically injected laser is considered theoretically with an emphasis on the understanding of the locked phase whereas previous works focus primarily on the frequency detuning limits. Exemplary photon and carrier number curves for regions within and outside stable locking are presented. The dependence of the phase limits on injection ratio naturally divides into three regions with qualitatively different descriptions for the phase boundaries in each. Frequency detunings at which the locked phase is zero for different injection ratios are investigated. Using this zero phase point it is shown that the coupling rate between the injected and internal field as well as the linewidth enhancement factor can be determined in a single voltage measurement under weak injection. The modulation response parameters at these detunings are analysed and shown to be strongly interconnected.

© 2013 Optical Society of America

OCIS Codes
(140.3520) Lasers and laser optics : Lasers, injection-locked
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 20, 2013
Revised Manuscript: August 2, 2013
Manuscript Accepted: September 23, 2013
Published: December 2, 2013

Citation
Aidan Daly, Brendan Roycroft, and Brian Corbett, "Stable locking phase limits of optically injected semiconductor lasers," Opt. Express 21, 30126-30139 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-30126


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Winzer and R. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94, 952–985 (2006). [CrossRef]
  2. M. Lu, H. Park, E. Bloch, A. Sivananthan, A. Bhardwaj, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Highly integrated optical heterodyne phase-locked loop with phase/frequency detection,” Opt. Express20, 9736–9741 (2012). [CrossRef] [PubMed]
  3. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron.18, 976–983 (1982). [CrossRef]
  4. F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron.21, 784–793 (1985). [CrossRef]
  5. E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express16, 6609–6618 (2008). [CrossRef] [PubMed]
  6. M. Bondiou, R. Gabet, G. M. Stéphan, and P. Besnard, “Linewidth of an optically injected semiconductor laser,” J. Opt. B: Quantum Semiclassical Opt.2, 41–46 (2000). [CrossRef]
  7. Y. Okajima, S. Hwang, and J. Liu, “Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection,” Opt. Commun.219, 357–364 (2003). [CrossRef]
  8. A. Fragkos, A. Bogris, D. Syvridis, and R. Phelan, “Amplitude noise limiting amplifier for phase encoded signals using injection locking in semiconductor lasers,” J. Lightwave Technol.30, 764–771 (2012). [CrossRef]
  9. S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep.416, 1–128 (2005). [CrossRef]
  10. A. Daly, T. Gründl, S. Huber, M. Müller, B. Roycroft, M. Amann, and B. Corbett, “Voltage spectroscopy and the operating state of an optically injected long wavelength VCSEL,” IEEE Photon. Technol. Lett.24, 1245–1247 (2012). [CrossRef]
  11. C. Henry, N. Olsson, and N. Dutta, “Locking range and stability of injection locked 1.54 μ m InGaAsP semiconductor lasers,” IEEE J. Quantum Electron.21, 1152–1156 (1985). [CrossRef]
  12. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron.39, 1196–1204 (2003). [CrossRef]
  13. E. Lau and M. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Topics Quantum Electron.15, 618–633 (2009). [CrossRef]
  14. X. Zhao and C. J. Chang-Hasnain, “A new amplifier model for resonance enhancement of optically injection-locked lasers,” IEEE Photon. Technol. Lett.20, 395–397 (2008). [CrossRef]
  15. T. B. Simpson, J. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron.32, 1456–1468 (1996). [CrossRef]
  16. E. J. Doedel, A. R. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Paffenroth, B. Sandstede, X. Wang, and C. Zhang, “Auto-07p: Continuation and bifurcation software for ordinary differential equations,” Tech. rep., Concordia University, Montreal (2007).
  17. Z. Jiao, Z. Lu, J. Liu, P. Poole, P. Barrios, D. Poitras, G. Pakulski, J. Caballero, and X. Zhang, “Linewidth enhancement factor of InAs/InP quantum dot lasers around 1.5μ m,” Opt. Commun.285, 4372–4375 (2012). [CrossRef]
  18. G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett.13, 430–432 (2001). [CrossRef]
  19. K. Iiyama, K. Hayashi, and Y. Ida, “Simple method for measuring the linewidth enhancement factor of semiconductor lasers by optical injection locking,” Opt. Lett.17, 1128–1130 (1992). [CrossRef] [PubMed]
  20. R. Hui, A. Mecozzi, A. D’Ottavi, and P. Spano, “Novel measurement technique of alpha factor in DFB semiconductor lasers by injection locking,” Electron. Lett.26, 997–998 (1990). [CrossRef]
  21. M. Van Exter and J. Woerdman, “Determination of alpha factor of Fabry-Perot-type semiconductor laser by injection locking,” Electron. Lett.28, 1607–1608 (1992). [CrossRef]
  22. H. Li, T. Lucas, J. G. McInerney, M. Wright, and R. Morgan, “Injection locking dynamics of vertical cavity semiconductor lasers under conventional and phase conjugate injection,” IEEE J. Quantum Electron.32, 227–235 (1996). [CrossRef]
  23. E. K. Lau, H.-K. Sung, and M. C. Wu, “Scaling of resonance frequency for strong injection-locked lasers,” Opt. Lett.32, 3373–3375 (2007). [CrossRef] [PubMed]
  24. N. M. Al-Hosiny, I. Henning, and M. Adams, “Correlation of electron density changes with optical frequency shifts in optically injected semiconductor lasers,” IEEE J. Quantum Electron.42, 570–580 (2006). [CrossRef]
  25. P. Guo, W. Yang, D. Parekh, A. Xu, Z. Chen, and C. J. Chang-Hasnain, “An ellipse model for cavity mode behavior of optically injection-locked vcsels,” Opt. Express20, 6980–6988 (2012). [CrossRef] [PubMed]
  26. S. Wieczorek, W. Chow, L. Chrostowski, and C. Chang-Hasnain, “Improved semiconductor-laser dynamics from induced population pulsation,” IEEE J. Quantum Electron.42, 552–562 (2006). [CrossRef]
  27. S.-K. Hwang, S.-C. Chan, S.-C. Hsieh, and C.-Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun.284, 3581–3589 (2011). [CrossRef]
  28. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, Inc., 1995).
  29. S. K. Hwang, J. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3- μsemiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett.16, 972–974 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited