OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30148–30155

Aerosol droplet optical trap loading using surface acoustic wave nebulization

S. Anand, J. Nylk, S. L. Neale, C. Dodds, S. Grant, M. H. Ismail, J. Reboud, J. M. Cooper, and D. McGloin  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 30148-30155 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1100 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the use of surface acoustic wave nebulization (SAWN) to load optical traps. We show that the droplets sizes produced can be tuned by altering the RF frequency applied to the devices, which leads to more control over the sizes of trapped particles. Typically the size distribution of the liquid aerosols delivered using SAWN is smaller than via a standard commercial nebulization device. The ability to trap a range of liquids or small solid particles, not readily accessible using other ultrasonic devices, is also demonstrated both in optical tweezers and dual beam fiber traps.

© 2013 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: July 10, 2013
Revised Manuscript: September 9, 2013
Manuscript Accepted: September 10, 2013
Published: December 2, 2013

S. Anand, J. Nylk, S. L. Neale, C. Dodds, S. Grant, M. H. Ismail, J. Reboud, J. M. Cooper, and D. McGloin, "Aerosol droplet optical trap loading using surface acoustic wave nebulization," Opt. Express 21, 30148-30155 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Li, F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, “The long-term impacts of aerosols on the vertical development of clouds and precipitation,” Nat. Geosci.4(12), 888–894 (2011). [CrossRef]
  2. A. Metzger, B. Verheggen, J. Dommen, J. Duplissy, A. S. Prevot, E. Weingartner, I. Riipinen, M. Kulmala, D. V. Spracklen, K. S. Carslaw, and U. Baltensperger, “Evidence for the role of organics in aerosol particle formation under atmospheric conditions,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6646–6651 (2010). [CrossRef] [PubMed]
  3. M. B. Dolovich and R. Dhand, “Aerosol drug delivery: developments in device design and clinical use,” Lancet377(9770), 1032–1045 (2011). [CrossRef] [PubMed]
  4. J. M. Williams, J. M. Jones, L. Ma, and M. Pourkashanian, “Pollutants from the combustion of solid biomass fuels,” Pror. Energy Combust. Sci.38(2), 113–137 (2012). [CrossRef]
  5. S. H. Lee and H. C. Allen, “Analytical measurements of atmospheric urban aerosol,” Anal. Chem.84(3), 1196–1201 (2012). [CrossRef] [PubMed]
  6. J. F. Kok, “A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle,” Proc. Natl. Acad. Sci. U.S.A.108(3), 1016–1021 (2011). [CrossRef] [PubMed]
  7. L. Treuel, S. Pederzani, and R. Zellner, “Deliquescence behaviour and crystallisation of ternary ammonium sulfate/dicarboxylic acid/water aerosols,” Phys. Chem. Chem. Phys.11(36), 7976–7984 (2009). [CrossRef] [PubMed]
  8. G. Kaduchak, D. N. Sinha, and D. C. Lizon, “Novel cylindrical, air-coupled levitation/concentration device,” Rev. Sci. Instrum.73(3), 1332–1336 (2002). [CrossRef]
  9. R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys.6(21), 4924–4927 (2004). [CrossRef]
  10. D. R. Burnham and D. McGloin, “Holographic optical trapping of aerosol droplets,” Opt. Express14(9), 4175–4181 (2006). [CrossRef] [PubMed]
  11. M. D. Summers, D. R. Burnham, and D. McGloin, “Trapping solid aerosols with optical tweezers: A comparison between gas and liquid phase optical traps,” Opt. Express16(11), 7739–7747 (2008). [CrossRef] [PubMed]
  12. J. R. Butler, J. B. Wills, L. Mitchem, D. R. Burnham, D. McGloin, and J. P. Reid, “Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets,” Lab Chip9(4), 521–528 (2009). [CrossRef] [PubMed]
  13. D. R. Burnham and D. McGloin, “Radius measurements of optically trapped aerosols through Brownian motion,” New J. Phys.11(6), 063022 (2009). [CrossRef]
  14. D. R. Burnham, P. J. Reece, and D. McGloin, “Parameter exploration of optically trapped liquid aerosols,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.82(5), 051123 (2010). [CrossRef] [PubMed]
  15. D. R. Burnham and D. McGloin, “Modelling of optical traps for aerosols,” J. Opt. Soc. Am. B28(12), 2856–2864 (2011). [CrossRef]
  16. M. Horstmann, K. Probst, and C. Fallnich, “Towards an integrated optical single aerosol particle lab,” Lab Chip12(2), 295–301 (2011). [CrossRef] [PubMed]
  17. R. E. H. Miles, J. S. Walker, D. R. Burnham, and J. P. Reid, “Retrieval of the complex refractive index of aerosol droplets from optical tweezers measurements,” Phys. Chem. Chem. Phys.14(9), 3037–3047 (2012). [CrossRef] [PubMed]
  18. C. Esen, T. Weigel, V. Sprynchak, and G. Schweiger, “Raman spectroscopy on deformed droplets: theory and experiments,” J. Quant. Spectrosc. Radiat. Transf.89(1-4), 79–85 (2004). [CrossRef]
  19. M. Kurosawa, T. Watanabe, A. Futami, and T. Higuchi, “Surface acoustic wave atomizer,” Sens. Actuators A Phys.50(1-2), 69–74 (1995). [CrossRef]
  20. K. Chono, N. Shimizu, Y. Matsui, J. Kondoh, and S. Shiokawa, “Development of Novel Atomization System Based on SAW Streaming,” Jpn. J. Appl. Phys.43(5B), 2987–2991 (2004). [CrossRef]
  21. J. W. Kim, Y. Yamagata, M. Takasaki, B. H. Lee, H. Ohmori, and T. Higuchi, “A device for fabricating protein chips by using a surface acoustic wave atomizer and electrostatic deposition,” Sens. Actuators B Chem.107(2), 535–545 (2005). [CrossRef]
  22. P. P. H. Le Brun, A. H. de Boer, H. G. Heijerman, and H. W. Frijlink, “A review of the technical aspects of drug nebulization,” Pharm. World Sci.22(3), 75–81 (2000). [CrossRef] [PubMed]
  23. L. Y. Qi, L. Y. Yeo, and J. R. Friend, “Interfacial destabilization and atomization driven by surface acoustic waves,” Phys. Fluids20(7), 074103 (2008). [CrossRef]
  24. J. Reboud, R. Wilson, Y. Zhang, M. H. Ismail, Y. Bourquin, and J. M. Cooper, “Nebulisation on a disposable array structured with phononic lattices,” Lab Chip12(7), 1268–1273 (2012). [CrossRef] [PubMed]
  25. S. R. Heron, R. Wilson, S. A. Shaffer, D. R. Goodlett, and J. M. Cooper, “Surface Acoustic Wave Nebulization of Peptides As a Microfluidic Interface for Mass Spectrometry,” Anal. Chem.82(10), 3985–3989 (2010). [CrossRef] [PubMed]
  26. Y. Bourquin, R. Wilson, Y. Zhang, J. Reboud, and J. M. Cooper, “Phononic crystals for shaping fluids,” Adv. Mater.23(12), 1458–1462 (2011). [CrossRef] [PubMed]
  27. J. Friend and L. Y. Yao, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys.83(2), 647–704 (2011). [CrossRef]
  28. A. Qi, J. R. Friend, L. Y. Yeo, D. A. V. Morton, M. P. McIntosh, and L. Spiccia, “Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization,” Lab Chip9(15), 2184–2193 (2009). [CrossRef] [PubMed]
  29. R. J. Lang, “Ultrasonic Atomization of Liquids,” J. Acoust. Soc. Am.34(1), 6–8 (1962). [CrossRef]
  30. F. Barreras, H. Amaveda, and A. Lozano, “Transient High-Frequency Ultrasonic Water Atomization,” Exp. Fluids33(3), 405–413 (2002). [CrossRef]
  31. D. Rudd, C. López-Mariscal, M. Summers, A. Shahvisi, J. C. Gutiérrez-Vega, and D. McGloin, “Fiber based optical trapping of aerosols,” Opt. Express16(19), 14550–14560 (2008). [CrossRef] [PubMed]
  32. T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the Instantaneous Velocity of a Brownian Particle,” Science328(5986), 1673–1675 (2010). [CrossRef] [PubMed]
  33. R. Wilson, J. Reboud, Y. Bourquin, S. L. Neale, Y. Zhang, and J. M. Cooper, “Phononic crystal structures for acoustically driven microfluidic manipulations,” Lab Chip11(2), 323–328 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (58 KB)     
» Media 2: MOV (2197 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited