OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30163–30174

Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer

Seok-Hwan Jeong, Daisuke Shimura, Takasi Simoyama, Miyoshi Seki, Nobuyuki Yokoyama, Minoru Ohtsuka, Keiji Koshino, Tsuyoshi Horikawa, Yu Tanaka, and Ken Morito  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 30163-30174 (2013)
http://dx.doi.org/10.1364/OE.21.030163


View Full Text Article

Enhanced HTML    Acrobat PDF (1545 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report superior spectral characteristics of silicon-nanowire-based 5th-order coupled resonator optical waveguides (CROW) fabricated by 193-nm ArF-immersion lithography process on a 300-mm silicon-on-insulator wafer. We theoretically analyze spectral characteristics, considering random phase errors caused by micro fabrication process. It will be experimentally demonstrated that the fabricated devices exhibit a low excess loss of 0.4 ± 0.2 dB, a high out-of-band rejection ratio of >40dB, and a wide flatband width of ~2 nm. Furthermore, we evaluate manufacturing tolerances for intra-dies and inter-dies, comparing with the cases for 248-nm KrF-dry lithography process. It will be shown that the 193-nm ArF-immersion lithography process can provide much less excess phase errors of Si-nanowire waveguides, thus enabling to give better filter spectral characteristics. Finally, spectral superiorities will be reconfirmed by measuring 25 Gbps modulated signals launched into the fabricated device. Clear eye diagrams are observed when the wavelengths of modulated signals are stayed within almost passband of the 5th-order CROW.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: August 7, 2013
Revised Manuscript: September 20, 2013
Manuscript Accepted: September 23, 2013
Published: December 2, 2013

Citation
Seok-Hwan Jeong, Daisuke Shimura, Takasi Simoyama, Miyoshi Seki, Nobuyuki Yokoyama, Minoru Ohtsuka, Keiji Koshino, Tsuyoshi Horikawa, Yu Tanaka, and Ken Morito, "Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer," Opt. Express 21, 30163-30174 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-30163


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” IEEE Proc. 97(7), 1166–1185 (2009).
  2. Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag.50(2), s67–s72 (2012). [CrossRef]
  3. A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing circuit on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron.16(1), 23–32 (2010). [CrossRef]
  4. X. Zheng, F. Liu, J. Lexau, D. Patil, G. Li, Y. Luo, H. Thacker, I. Shubin, J. Yao, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low power arrayed CMOS silicon photonic transceivers for an 80 Gbps WDM optical link,” in Proceedings of 2011 Optical Fiber Communication Conference (Los Angelis, United States of America, 2011), PDPA1. [CrossRef]
  5. N. N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25microm silicon-on-insulator waveguides,” Opt. Express18(8), 7994–7999 (2010). [CrossRef] [PubMed]
  6. D. J. Kim, J. M. Lee, J. H. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett.20(19), 1615–1617 (2008). [CrossRef]
  7. S.-H. Jeong, S. Tanaka, T. Akiyama, S. Sekiguchi, Y. Tanaka, and K. Morito, “Flat-topped and low loss silicon-nanowire-type optical MUX/DeMUX employing multi-stage microring resonator assisted delayed Mach-Zehnder interferometers,” Opt. Express20(23), 26000–26011 (2012). [CrossRef] [PubMed]
  8. F. Xia, L. Sekaric, M. O’Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-isulator photonic wires,” Appl. Phys. Lett.89(4), 041122 (2006). [CrossRef]
  9. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express15(19), 11934–11941 (2007). [CrossRef] [PubMed]
  10. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007). [CrossRef]
  11. P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, M. Asghari, A. Agrawal, T. Banwell, R. Menendez, P. Toliver, and T. K. Woodward, “A tunable optical channelizing filter using silicon coupled ring resonators,” in Proceedings of 2010 Conference on Lasers and Electro-Optics (San Jose, United States of America, 2010), CThAA6. [CrossRef]
  12. P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express18(23), 23784–23789 (2010). [CrossRef] [PubMed]
  13. J. D. Doménech, P. Muñoz, and J. J. Capmany, “Transmission and group-delay characterization of coupled resonator optical waveguides apodized through the longitudinal offset technique,” Opt. Lett.36(2), 136–138 (2011). [CrossRef] [PubMed]
  14. S. Park, K. J. Kim, I. G. Kim, and G. Kim, “Si micro-ring MUX/DeMUX WDM filters,” Opt. Express19(14), 13531–13539 (2011). [CrossRef] [PubMed]
  15. X. Luo, J. Song, S. Feng, A. W. Poon, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon high-order coupled microring based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012). [CrossRef]
  16. J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photon. Technol. Lett.25(16), 1543–1546 (2013). [CrossRef]
  17. F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express21(10), 11652–11658 (2013). [CrossRef] [PubMed]
  18. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010). [CrossRef]
  19. S. K. Selvaraja, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 316–324 (2010). [CrossRef]
  20. S. K. Selvaraja, G. Murdoch, A. Milenin, C. Delvaux, C. Ong, S. Pathak, D. Vermeulen, G. Stercks, G. Winroth, P. Verheyen, G. Lepage, W. Bogaerts, R. Baets, J. V. Campenhout, and P. Absil, “Advanced 300-mm wafer scale patterning for silicon photonics devices with low record loss and phase error,” in Proceedings of 2012 Optoelectronics and Communication Conference (Pusan, Korea, 2012), PD22-2.
  21. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited