OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30183–30195

Comparison of two x-ray phase-contrast imaging methods with a microfocus source

T. Zhou, U. Lundström, T. Thüring, S. Rutishauser, D. H. Larsson, M. Stampanoni, C. David, H. M. Hertz, and A. Burvall  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 30183-30195 (2013)
http://dx.doi.org/10.1364/OE.21.030183


View Full Text Article

Enhanced HTML    Acrobat PDF (1993 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a comparison for high-resolution imaging with a laboratory source between grating-based (GBI) and propagation-based (PBI) x-ray phase-contrast imaging. The comparison is done through simulations and experiments using a liquid-metal-jet x-ray microfocus source. Radiation doses required for detection in projection images are simulated as a function of the diameter of a cylindrical sample. Using monochromatic radiation, simulations show a lower dose requirement for PBI for small object features and a lower dose for GBI for larger object features. Using polychromatic radiation, such as that from a laboratory microfocus source, experiments and simulations show a lower dose requirement for PBI for a large range of feature sizes. Tested on a biological sample, GBI shows higher noise levels than PBI, but its advantage of quantitative refractive index reconstruction for multi-material samples becomes apparent.

© 2013 Optical Society of America

OCIS Codes
(110.2960) Imaging systems : Image analysis
(110.6760) Imaging systems : Talbot and self-imaging effects
(110.7440) Imaging systems : X-ray imaging

ToC Category:
X-ray Optics

History
Original Manuscript: September 25, 2013
Revised Manuscript: November 12, 2013
Manuscript Accepted: November 22, 2013
Published: December 2, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Citation
T. Zhou, U. Lundström, T. Thüring, S. Rutishauser, D. H. Larsson, M. Stampanoni, C. David, H. M. Hertz, and A. Burvall, "Comparison of two x-ray phase-contrast imaging methods with a microfocus source," Opt. Express 21, 30183-30195 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-30183


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Raupach and T. Flohr, “Performance evaluation of x-ray differential phase contrast computed tomography (PCT) with respect to medical imaging,” Med. Phys.39(8), 4761–4774 (2012). [CrossRef] [PubMed]
  2. U. Lundström, D. H. Larsson, A. Burvall, P. A. Takman, L. Scott, H. Brismar, and H. M. Hertz, “X-ray phase contrast for CO2 microangiography,” Phys. Med. Biol.57(9), 2603–2617 (2012). [CrossRef] [PubMed]
  3. O. Hemberg, M. Otendal, and H. M. Hertz, “Liquid-metal-jet anode electron-impact x-ray source,” Appl. Phys. Lett.83(7), 1483–1485 (2003). [CrossRef]
  4. D. H. Larsson, P. A. C. Takman, U. Lundström, A. Burvall, and H. M. Hertz, “A 24 keV liquid-metal-jet x-ray source for biomedical applications,” Rev. Sci. Instrum.82(12), 123701 (2011). [CrossRef] [PubMed]
  5. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996). [CrossRef]
  6. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express13(16), 6296–6304 (2005). [CrossRef] [PubMed]
  7. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys.2(4), 258–261 (2006). [CrossRef]
  8. C. Parham, Z. Zhong, D. M. Connor, L. D. Chapman, and E. D. Pisano, “Design and implementation of a compact low-dose diffraction enhanced medical imaging system,” Acad. Radiol.16(8), 911–917 (2009). [CrossRef] [PubMed]
  9. I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80(9), 093702 (2009). [CrossRef] [PubMed]
  10. T. Thüring, T. Zhou, U. Lundström, A. Burvall, S. Rutishauser, C. David, H. M. Hertz, and M. Stampanoni, “X-ray grating interferometry with a liquid-metal-jet source,” Appl. Phys. Lett.103(9), 091105 (2013). [CrossRef]
  11. D. H. Larsson, U. Lundström, U. K. Westermark, M. Arsenian Henriksson, A. Burvall, and H. M. Hertz, “First application of liquid-metal-jet sources for small-animal imaging: high-resolution CT and phase-contrast tumor demarcation,” Med. Phys.40(2), 021909 (2013). [CrossRef] [PubMed]
  12. D. Hahn, P. Thibault, M. Bech, M. Stockmar, S. Schleede, I. Zanette, A. Rack, T. Weitkamp, A. Sztrókay, T. Schlossbauer, F. Bamberg, M. Reiser, and F. Pfeiffer, “Numerical comparison of X-ray differential phase contrast and attenuation contrast,” Biomed. Opt. Express3(6), 1141–1148 (2012). [CrossRef] [PubMed]
  13. P. Modregger, B. R. Pinzer, T. Thüring, S. Rutishauser, C. David, and M. Stampanoni, “Sensitivity of X-ray grating interferometry,” Opt. Express19(19), 18324–18338 (2011). [CrossRef] [PubMed]
  14. T. Köhler, K. Jürgen Engel, and E. Roessl, “Noise properties of grating-based x-ray phase contrast computed tomography,” Med. Phys.38(S1), S106–S116 (2011). [CrossRef] [PubMed]
  15. R. Raupach and T. G. Flohr, “Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography,” Phys. Med. Biol.56(7), 2219–2244 (2011). [CrossRef] [PubMed]
  16. E. Fredenberg, M. Danielsson, J. W. Stayman, J. H. Siewerdsen, and M. Aslund, “Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach,” Med. Phys.39(9), 5317–5335 (2012). [CrossRef] [PubMed]
  17. P. C. Diemoz, A. Bravin, and P. Coan, “Theoretical comparison of three X-ray phase-contrast imaging techniques: propagation-based imaging, analyzer-based imaging and grating interferometry,” Opt. Express20(3), 2789–2805 (2012). [CrossRef] [PubMed]
  18. E. Pagot, S. Fiedler, P. Cloetens, A. Bravin, P. Coan, K. Fezzaa, J. Baruchel, J. Härtwig, K. von Smitten, M. Leidenius, M. L. Karjalainen-Lindsberg, and J. Keyriläinen, “Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging,” Phys. Med. Biol.50(4), 709–724 (2005). [CrossRef] [PubMed]
  19. P. C. Diemoz, A. Bravin, M. Langer, and P. Coan, “Analytical and experimental determination of signal-to-noise ratio and figure of merit in three phase-contrast imaging techniques,” Opt. Express20(25), 27670–27690 (2012). [CrossRef] [PubMed]
  20. V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum.81(7), 073709 (2010). [CrossRef] [PubMed]
  21. G. H. Chen, J. Zambelli, K. Li, N. Bevins, and Z. H. Qi, “Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography,” Med. Phys.38(2), 584–588 (2011). [CrossRef] [PubMed]
  22. K. Li, N. Bevins, J. Zambelli, and G. H. Chen, “Fundamental relationship between the noise properties of grating-based differential phase contrast CT and absorption CT: theoretical framework using a cascaded system model and experimental validation,” Med. Phys.40(2), 021908 (2013). [CrossRef] [PubMed]
  23. J. Zambelli, N. Bevins, Z. Qi, and G. H. Chen, “Radiation dose efficiency comparison between differential phase contrast CT and conventional absorption CT,” Med. Phys.37(6), 2473–2479 (2010). [CrossRef] [PubMed]
  24. X. Tang, Y. Yang, and S. Tang, “Characterization of imaging performance in differential phase contrast CT compared with the conventional CT--noise power spectrum NPS(k),” Med. Phys.38(7), 4386–4395 (2011). [CrossRef] [PubMed]
  25. T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys.38(7), 4133–4140 (2011). [CrossRef] [PubMed]
  26. T. Zhou, U. Lundström, D. H. Larsson, H. M. Hertz, and A. Burvall, “Low-dose phase-contrast X-ray imaging: a comparison of two methods,” J. Phys. Conf. Ser.463, 012041 (2013). [CrossRef]
  27. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008). [CrossRef] [PubMed]
  28. A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “Phase retrieval in X-ray phase-contrast imaging suitable for tomography,” Opt. Express19(11), 10359–10376 (2011). [CrossRef] [PubMed]
  29. F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard x-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett.98(10), 108105 (2007). [CrossRef] [PubMed]
  30. G. W. Faris and R. L. Byer, “Three-dimensional beam-deflection optical tomography of a supersonic jet,” Appl. Opt.27(24), 5202–5212 (1988). [CrossRef] [PubMed]
  31. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206(1), 33–40 (2002). [CrossRef] [PubMed]
  32. J. Vlassenbroeck, M. Dierick, B. Masschaele, V. Cnudde, L. van Hoorebeke, and P. Jacobs, “Software tools for quantification of X-ray microtomography,” Nucl. Instrum. Methods Phys. Res. A580(1), 442–445 (2007). [CrossRef]
  33. D. M. Paganin, Coherent X-Ray Optics (Oxford University, 2009).
  34. J. H. Hubbell and S. M. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest (Radiation and Biomolecular Physics Division, PML, NIST, 1996).
  35. L. Kissel, “RTAB: the Rayleigh scattering database,” Radiat. Phys. Chem.59(2), 185–200 (2000). [CrossRef]
  36. J. Baró, J. Sempau, J. M. Fernandezvarea, and F. Salvat, “Penelope - an algorithm for Monte-Carlo simulation of the penetration and energy-loss of electrons and positrons in matter,” Nucl. Instrum. Methods Phys. Res. B100(1), 31–46 (1995). [CrossRef]
  37. H. H. Barrett and K. J. Myers, Foundations of Image Science (John Wiley, 2003).
  38. U. Lundström, D. H. Larsson, A. Burvall, L. Scott, U. K. Westermark, M. Wilhelm, M. Arsenian Henriksson, and H. M. Hertz, “X-ray phase-contrast CO2 angiography for sub-10 μm vessel imaging,” Phys. Med. Biol.57(22), 7431–7441 (2012). [CrossRef] [PubMed]
  39. A. Rose, “The sensitivity performance of the human eye on an absolute scale,” J. Opt. Soc. Am.38(2), 196–208 (1948). [CrossRef] [PubMed]
  40. A. Fandos-Morera, M. Prats-Esteve, J. M. Tura-Soteras, and A. Traveria-Cros, “Breast tumors: composition of microcalcifications,” Radiology169(2), 325–327 (1988). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited