OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30196–30203

Rapid generation of light beams carrying orbital angular momentum

Mohammad Mirhosseini, Omar S. Magaña-Loaiza, Changchen Chen, Brandon Rodenburg, Mehul Malik, and Robert W. Boyd  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 30196-30203 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1054 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a technique for encoding both amplitude and phase variations onto a laser beam using a single digital micro-mirror device (DMD). Using this technique, we generate Laguerre-Gaussian and vortex orbital-angular-momentum (OAM) modes, along with modes in a set that is mutually unbiased with respect to the OAM basis. Additionally, we have demonstrated rapid switching among the generated modes at a speed of 4 kHz, which is much faster than the speed regularly achieved by phase-only spatial light modulators (SLMs). The dynamic control of both phase and amplitude of a laser beam is an enabling technology for classical communication and quantum key distribution (QKD) systems that employ spatial mode encoding.

© 2013 Optical Society of America

OCIS Codes
(230.6120) Optical devices : Spatial light modulators
(050.4865) Diffraction and gratings : Optical vortices
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Physical Optics

Original Manuscript: September 12, 2013
Revised Manuscript: November 14, 2013
Manuscript Accepted: November 20, 2013
Published: December 2, 2013

Mohammad Mirhosseini, Omar S. Magaña-Loaiza, Changchen Chen, Brandon Rodenburg, Mehul Malik, and Robert W. Boyd, "Rapid generation of light beams carrying orbital angular momentum," Opt. Express 21, 30196-30203 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992). [CrossRef] [PubMed]
  2. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics6, 488–496 (2012). [CrossRef]
  3. R. W. Boyd, A. K. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D. J. Gauthier, “Quantum key distribution in a high-dimensional state space: exploiting the transverse degree of freedom of the photon,” Proc. SPIE7948, 79480L (2011).
  4. M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun.4, 2781 (2013). [CrossRef] [PubMed]
  5. N. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett.88, 127902 (2002). [CrossRef] [PubMed]
  6. M. Bourennane, A. Karlsson, G. Bjork, N. Gisin, and N. J. Cerf, “Quantum key distribution using multilevel encoding: security analysis,” J. Phys. A35, 10065–10076 (2002). [CrossRef]
  7. T. Ando, T. Ohtake, N. Matsumoto, T. Inoue, and N. Fukuchi, “Mode purities of Laguerre–Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators,” Opt. Lett.34, 34–36 (2009). [CrossRef]
  8. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express12, 5448–5456 (2004). [CrossRef] [PubMed]
  9. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett.96, 163905 (2006). [CrossRef] [PubMed]
  10. K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, “Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express12, 3548–3553 (2004). [CrossRef] [PubMed]
  11. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proc. IEEE Int. Conf. (Bangalore, 1984), pp. 175–179.
  12. E. Bolduc, N. Bent, E. Santamato, E. Karimi, and R. W. Boyd, “Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram,” Opt. Lett.38, 3546–35490 (2013). [CrossRef] [PubMed]
  13. M. N. O’Sullivan, M. Mirhosseini, M. Malik, and R. W. Boyd, “Near-perfect sorting of orbital angular momentum and angular position states of light,” Opt. Express20, 24444–24449 (2012). [CrossRef]
  14. M. Malik, M. N. O’Sullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. P. J. Lavery, M. J. Padgett, and R. W. Boyd, “Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding,” Opt. Express20, 13195–13200 (2012). [CrossRef] [PubMed]
  15. M. T. Gruneisen, W. A. Miller, R. C. Dymale, and A. M. Sweiti, “Holographic generation of complex fields with spatial light modulators: application to quantum key distribution,” Appl. Opt.47, A32–A42 (2008). [CrossRef] [PubMed]
  16. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science340, 844–847 (2013). [CrossRef] [PubMed]
  17. P. Zhu, O. Fajardo, J. Shum, Y.-P. Zhang Schärer, and R. W. Friedrich, “High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device,” Nat. Protoc.7, 1410–1425 (2012). [CrossRef] [PubMed]
  18. Y.-X. Ren, M. Li, K. Huang, J.-G. Wu, H.-F. Gao, Z.-Q. Wang, and Y.-M. Li, “Experimental generation of Laguerre-Gaussian beam using digital micromirror device,” Appl. Opt.49, 1838 (2010). [CrossRef] [PubMed]
  19. P. J. Rodrigo, I. R. Perch-Nielsen, and J. Glückstad, “High-speed phase modulation using the RPC method with a digital micromirror-array device,” Opt. Express14, 5588–5593 (2006). [CrossRef] [PubMed]
  20. V. Lerner, D. Shwa, Y. Drori, and N. Katz, “Shaping Laguerre–Gaussian laser modes with binary gratings using a digital micromirror device,” Opt. Lett.37, 4826–4828 (2012). [CrossRef] [PubMed]
  21. R. W. Cohn and M. Liang, “Pseudorandom phase-only encoding of real-time spatial light modulators,” Appl. Opt.35, 2488–2498 (1996). [CrossRef] [PubMed]
  22. B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Dev.13, 160–168 (1969). [CrossRef]
  23. W. H. Lee, “High efficiency multiple beam gratings,” Appl. Opt.18, 2152–2158 (1979). [CrossRef] [PubMed]
  24. J. A. Davis, K. Olea Valadez, and D. M. Cottrell, “Encoding amplitude and phase information onto a binary phase-only spatial light modulator,” Appl. Opt.43, 2003–2008 (2003). [CrossRef]
  25. J. P. Kirk and A. L. Jones, “Phase-only complex-valued spatial filter,” J. Opt. Soc. Am.61, 1023–1028 (1971). [CrossRef]
  26. D. C. Chu and J. W. Goodman, “Spectrum shaping with parity sequences,” Appl. Opt.11, 1716–1724 (1972). [CrossRef] [PubMed]
  27. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt.38, 5004–5013 (1999). [CrossRef]
  28. L. J. Hornbeck, “From cathode rays to digital micromirrors: a history of electronic projection display technology,” Tex. Instrum. Tech. J.15, 7–46 (1998).
  29. D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” in Micromachining and Microfabrication, H. Urey, ed. (SPIE, 2003), pp. 14–25.
  30. Joseph W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2004).
  31. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002). [CrossRef]
  32. M. P. J. Lavery, D. J. Robertson, G. C. G. Berkhout, G. D. Love, M. J. Padgett, and J. Courtial, “Refractive elements for the measurement of the orbital angular momentum of a single photon,” Opt. Express20, 2110–2115 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited