OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30266–30274

A miniature temperature high germanium doped PCF interferometer sensor

F. C. Favero, R. Spittel, F. Just, J. Kobelke, M. Rothhardt, and H. Bartelt  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 30266-30274 (2013)
http://dx.doi.org/10.1364/OE.21.030266


View Full Text Article

Enhanced HTML    Acrobat PDF (1254 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report in this paper a high thermal sensitivity (78 pm/°C) modal interferometer using a very short Photonic Crystal Fiber stub with a shaped Germanium doped core. The Photonic Crystal Fiber is spliced between two standard fibers. The splice regions allow the excitation of the core and cladding modes in the PCF and perform an interferometric interaction of such modes. The device is proposed for sensitive temperature measurements in transmission, as well as in reflection operation mode with the same high temperature sensitivity.

© 2013 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(160.0160) Materials : Materials
(060.4005) Fiber optics and optical communications : Microstructured fibers
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(280.6780) Remote sensing and sensors : Temperature

ToC Category:
Sensors

History
Original Manuscript: October 14, 2013
Revised Manuscript: November 15, 2013
Manuscript Accepted: November 15, 2013
Published: December 3, 2013

Citation
F. C. Favero, R. Spittel, F. Just, J. Kobelke, M. Rothhardt, and H. Bartelt, "A miniature temperature high germanium doped PCF interferometer sensor," Opt. Express 21, 30266-30274 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-30266


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. B. Frazao, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi Photonic Crystal Fiber Loop Mirror,” Sens. Journal7(10), 1453–1455 (2007). [CrossRef]
  2. B. Larrión, M. Hernánez, F. J. Arregui, J. Goicoechea, J. Bravo, and I. R. Matías, “Photonic crystal fiber temperature sensor based on quantum dot nanocoatings,” J. Sens.2009, 932471 (2009). [CrossRef]
  3. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett.34(3), 322–324 (2009). [CrossRef] [PubMed]
  4. O. B. Frazao, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent Fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009). [CrossRef]
  5. Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol.17(5), 1129–1133 (2006). [CrossRef]
  6. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007). [CrossRef]
  7. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express15(9), 5711–5720 (2007). [CrossRef] [PubMed]
  8. W. J. Bock, T. A. Eftimov, P. Mikulic, and J. Chen, “An inline core-cladding intermodal Interferometer using a photonic crystal fiber,” J. of Lightw. Tech.27(17), 3933–3939 (2009). [CrossRef]
  9. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett.33(21), 2455–2457 (2008). [CrossRef] [PubMed]
  10. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express16(15), 11369–11375 (2008). [CrossRef] [PubMed]
  11. M. J. Kim, K. S. Park, H. Y. Choi, S.-J. Baik, K. Im, and B. H. Lee, “High temperature sensor based on a photonic crystal fiber interferometer,” Proc. SPIE7004, 700407 (2008). [CrossRef]
  12. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000◦C,” Opt. Express17(24), 21551–21559 (2009). [CrossRef] [PubMed]
  13. S. M. Nalawade and H. V. Thakur, “Photonic crystal fiber strain-independent temperature sensing based on modal interferometer,” IEEE Photon. Technol. Lett.23(21), 1600–1602 (2011). [CrossRef]
  14. C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” Sens. Journal12(8), 2593–2597 (2012).
  15. Y. Cui, P. P. Shum, D. J. J. Hu, G. Wang, G. Humbert, and X.-Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber Sagnac interferometer,” IEEE Photonics Journal4(5), 1801–1808 (2012). [CrossRef]
  16. A. Bozolan, R. M. Gerosa, C. J. S. de Matos, and M. A. Romero, “Temperature sensing using colloidal-core photonic crystal fiber,” Sens. Journal12(1), 195–200 (2012). [CrossRef]
  17. B. Dong, D. P. Zhou, L. Wei, W. K. Liu, and J. W. Lit, “Temperature- and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer,” Opt. Express16(23), 19291–19296 (2008). [CrossRef] [PubMed]
  18. www.comsol.com
  19. J. M. Pottage, D. M. Bird, T. D. Hedley, J. Knight, T. Birks, P. St. J. Russell, and P. Roberts, “Robust photonic band gaps for hollow core guidance in PCF made from high index glass,” Opt. Express11(22), 2854–2861 (2003). [CrossRef] [PubMed]
  20. J. C. Flanagan, R. Amezcua, F. Poletti, J. R. Hayes, N. G. R. Broderick, and D. J. Richardson, “The effect of periodicity on the defect modes of large mode area microstructured fibers,” Opt. Express16(23), 18631–18645 (2008). [CrossRef] [PubMed]
  21. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett.24(21), 1460–1462 (1999). [CrossRef] [PubMed]
  22. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, “Cladding-mode-resonances in air-silica microstructure optical fibers,” J. Lightw. Techn.18(8), 1084–1100 (2000). [CrossRef]
  23. F. Just, H.-R. Müller, S. Unger, J. Kirchhof, V. Reichel, and H. Bartelt, “Ytterbium-doping related stresses in preforms for high-power fiber lasers,” J. Lightw. Techn.27(12), 2111–2116 (2009).
  24. Y.-J. Kim, U. C. Paek, and B. H. Lee, “Measurement of refractive-index variation with temperature by use of long-period fiber gratings,” Opt. Lett.27(15), 1297–1299 (2002). [CrossRef] [PubMed]
  25. Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference,” Appl. Opt.50(4), 468–472 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited