OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30282–30294

Holographic optical tweezers combined with back-focal-plane displacement detection

Ferran Marsà, Arnau Farré, Estela Martín-Badosa, and Mario Montes-Usategui  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 30282-30294 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5993 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A major problem with holographic optical tweezers (HOTs) is their incompatibility with laser-based position detection methods, such as back-focal-plane interferometry (BFPI). The alternatives generally used with HOTs, like high-speed video tracking, do not offer the same spatial and temporal bandwidths. This has limited the use of this technique in precise quantitative experiments. In this paper, we present an optical trap design that combines digital holography and back-focal-plane displacement detection. We show that, with a particularly simple setup, it is possible to generate a set of multiple holographic traps and an additional static non-holographic trap with orthogonal polarizations and that they can be, therefore, easily separated for measuring positions and forces with the high positional and temporal resolutions of laser-based detection. We prove that measurements from both polarizations contain less than 1% crosstalk and that traps in our setup are harmonic within the typical range. We further tested the instrument in a DNA stretching experiment and we discuss an interesting property of this configuration: the small drift of the differential signal between traps.

© 2013 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(230.6120) Optical devices : Spatial light modulators
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: October 4, 2013
Revised Manuscript: November 19, 2013
Manuscript Accepted: November 19, 2013
Published: December 3, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Ferran Marsà, Arnau Farré, Estela Martín-Badosa, and Mario Montes-Usategui, "Holographic optical tweezers combined with back-focal-plane displacement detection," Opt. Express 21, 30282-30294 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970). [CrossRef]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003). [CrossRef] [PubMed]
  3. L. Nugent-Glandorf and T. T. Perkins, “Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection,” Opt. Lett.29(22), 2611–2613 (2004). [CrossRef] [PubMed]
  4. E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature438(7067), 460–465 (2005). [CrossRef] [PubMed]
  5. J. R. Moffitt, Y. R. Chemla, D. Izhaky, and C. Bustamante, “Differential detection of dual traps improves the spatial resolution of optical tweezers,” Proc. Natl. Acad. Sci. U.S.A.103(24), 9006–9011 (2006). [CrossRef] [PubMed]
  6. K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996). [CrossRef]
  7. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys.30(Part 2, No. 5B), L907–L909 (1991). [CrossRef]
  8. M. Capitanio, R. Cicchi, and F. S. Pavone, “Continuous and time-shared multiple optical tweezers for the study of single motor proteins,” Opt. Lasers Eng.45(4), 450–457 (2007). [CrossRef]
  9. Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev.6(1), 24–27 (1999). [CrossRef]
  10. https://sites.google.com/site/opticaltrappingpark/home/statistics
  11. F. Belloni, S. Monneret, F. Monduc, and M. Scordia, “Multiple holographic optical tweezers parallel calibration with optical potential well characterization,” Opt. Express16(12), 9011–9020 (2008). [CrossRef] [PubMed]
  12. A. van der Horst and N. R. Forde, “Calibration of dynamic holographic optical tweezers for force measurements on biomaterials,” Opt. Express16(25), 20987–21003 (2008). [CrossRef] [PubMed]
  13. A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J Biophotonics3(4), 224–233 (2010). [CrossRef] [PubMed]
  14. A. Farré, M. Shayegan, C. López-Quesada, G. A. Blab, M. Montes-Usategui, N. R. Forde, and E. Martín-Badosa, “Positional stability of holographic optical traps,” Opt. Express19(22), 21370–21384 (2011). [CrossRef] [PubMed]
  15. C. H. J. Schmitz, J. P. Spatz, and J. E. Curtis, “High-precision steering of multiple holographic optical traps,” Opt. Express13(21), 8678–8685 (2005). [CrossRef] [PubMed]
  16. M. Persson, D. Engström, A. Frank, J. Backsten, J. Bengtsson, and M. Goksör, “Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change,” Opt. Express18(11), 11250–11263 (2010). [CrossRef] [PubMed]
  17. G. Thalhammer, R. W. Bowman, G. D. Love, M. J. Padgett, and M. Ritsch-Marte, “Speeding up liquid crystal SLMs using overdrive with phase change reduction,” Opt. Express21(2), 1779–1797 (2013). [CrossRef] [PubMed]
  18. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express15(4), 1913–1922 (2007). [CrossRef] [PubMed]
  19. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett.24(9), 608–610 (1999). [CrossRef] [PubMed]
  20. M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martín-Badosa, “Fast generation of holographic optical tweezers by random mask encoding of Fourier components,” Opt. Express14(6), 2101–2107 (2006). [CrossRef] [PubMed]
  21. S. Bianchi and R. Di Leonardo, “Real-time optical micro-manipulation using optimized holograms generated on the GPU,” Comput. Phys. Commun.181(8), 1444–1448 (2010). [CrossRef]
  22. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77(1), 205–228 (2008). [CrossRef] [PubMed]
  23. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett.23(1), 7–9 (1998). [CrossRef] [PubMed]
  24. http://cismm.cs.unc.edu/resources/software-manuals/video-spot-tracker-manual/
  25. A. van der Horst and N. R. Forde, “Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth,” Opt. Express18(8), 7670–7677 (2010). [CrossRef] [PubMed]
  26. P. Mangeol, T. Bizebard, C. Chiaruttini, M. Dreyfus, M. Springer, and U. Bockelmann, “Probing ribosomal protein-RNA interactions with an external force,” Proc. Natl. Acad. Sci. U.S.A.108(45), 18272–18276 (2011). [CrossRef] [PubMed]
  27. M. C. Noom, B. van den Broek, J. van Mameren, and G. J. L. Wuite, “Visualizing single DNA-bound proteins using DNA as a scanning probe,” Nat. Methods4(12), 1031–1036 (2007). [CrossRef] [PubMed]
  28. R. T. Dame, M. C. Noom, and G. J. L. Wuite, “Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation,” Nature444(7117), 387–390 (2006). [CrossRef] [PubMed]
  29. E. Ronzitti, M. Guillon, V. de Sars, and V. Emiliani, “LCOS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression,” Opt. Express20(16), 17843–17855 (2012). [CrossRef] [PubMed]
  30. A. Farré, F. Marsà, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles,” Opt. Express20(11), 12270–12291 (2012). [CrossRef] [PubMed]
  31. A. Farré and M. Montes-Usategui, “A force detection technique for single-beam optical traps based on direct measurement of light momentum changes,” Opt. Express18(11), 11955–11968 (2010). [CrossRef] [PubMed]
  32. S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science271(5250), 795–799 (1996). [CrossRef] [PubMed]
  33. P. Mangeol and U. Bockelmann, “Interference and crosstalk in double optical tweezers using a single laser source,” Rev. Sci. Instrum.79(8), 083103 (2008). [CrossRef] [PubMed]
  34. C. López-Quesada, J. Andilla, and E. Martín-Badosa, “Correction of aberration in holographic optical tweezers using a Shack-Hartmann sensor,” Appl. Opt.48(6), 1084–1090 (2009). [CrossRef] [PubMed]
  35. E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process.66(7), S75–S78 (1998). [CrossRef]
  36. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75(3), 594–612 (2004). [CrossRef]
  37. A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett.95(16), 168102 (2005). [CrossRef] [PubMed]
  38. E. R. Dufresne and D. G. Grier, “Optical tweezer array and optical substrates created with diffractive optics,” Rev. Sci. Instrum.69(5), 1974–1977 (1998). [CrossRef]
  39. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997). [CrossRef] [PubMed]
  40. J. P. Rickgauer, D. N. Fuller, and D. E. Smith, “DNA as a metrology standard for length and force measurements with optical tweezers,” Biophys. J.91(11), 4253–4257 (2006). [CrossRef] [PubMed]
  41. T. Odijk, “Stiff Chains and Filaments under Tension,” Macromolecules28(20), 7016–7018 (1995). [CrossRef]
  42. J. van Mameren, P. Gross, G. Farge, P. Hooijman, M. Modesti, M. Falkenberg, G. J. L. Wuite, and E. J. G. Peterman, “Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging,” Proc. Natl. Acad. Sci. U.S.A.106(43), 18231–18236 (2009). [CrossRef] [PubMed]
  43. E. Eriksson, S. Keen, J. Leach, M. Goksör, and M. J. Padgett, “The effect of external forces on discrete motion within holographic optical tweezers,” Opt. Express15(26), 18268–18274 (2007). [CrossRef] [PubMed]
  44. G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express16(19), 14561–14570 (2008). [CrossRef] [PubMed]
  45. F. Czerwinski, “allan v1.71,” MatlabCentral 21727 (2008), http://www.mathworks.com/matlabcentral/fileexchange/21727
  46. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE54(2), 221–230 (1966). [CrossRef]
  47. D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express16(20), 15897–15902 (2008). [CrossRef] [PubMed]
  48. I. Moreno, J. A. Davis, T. M. Hernandez, D. M. Cottrell, and D. Sand, “Complete polarization control of light from a liquid crystal spatial light modulator,” Opt. Express20(1), 364–376 (2012). [CrossRef] [PubMed]
  49. F. Kenny, D. Lara, O. G. Rodríguez-Herrera, and C. Dainty, “Complete polarization and phase control for focus-shaping in high-NA microscopy,” Opt. Express20(13), 14015–14029 (2012). [CrossRef] [PubMed]
  50. A. Arias, S. Etcheverry, P. Solano, J. P. Staforelli, M. J. Gallardo, H. Rubinsztein-Dunlop, and C. Saavedra, “Simultaneous rotation, orientation and displacement control of birefringent microparticles in holographic optical tweezers,” Opt. Express21(1), 102–111 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited