OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30306–30314

Femtosecond laser fluorescence and propagation in very dense potassium vapor

Y. Makdisi, J. Kokaj, K. Afrousheh, R. Nair, J. Mathew, and G Pichler  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 30306-30314 (2013)
http://dx.doi.org/10.1364/OE.21.030306


View Full Text Article

Enhanced HTML    Acrobat PDF (1014 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Femtosecond (fs) laser propagation and fluorescence of dense potassium vapor was studied, and the spectral region around the first and the second doublets of the principal series lines of potassium atoms was investigated. In our search we did not observe the conical emission in the far field, although it was previously observed in the case of rubidium. We discuss the possible reason of this unexpected result. The fluorescence spectrum revealed Rb impurity resonance lines in emission due to the collisional redistribution from the K(4p) levels into the Rb(5p) levels. In the forward propagation of 400 nm femtosecond light we observed the molecular band red shifted from potassium second doublet. However, no molecular spectrum was observed when the mode-locked fs laser light was discretely tuned within the wings of the first resonance lines, at 770 nm.

© 2013 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(140.0140) Lasers and laser optics : Lasers and laser optics
(300.6210) Spectroscopy : Spectroscopy, atomic
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: October 14, 2013
Revised Manuscript: November 12, 2013
Manuscript Accepted: November 15, 2013
Published: December 3, 2013

Citation
Y. Makdisi, J. Kokaj, K. Afrousheh, R. Nair, J. Mathew, and G Pichler, "Femtosecond laser fluorescence and propagation in very dense potassium vapor," Opt. Express 21, 30306-30314 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-30306


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. E. Johnson and J. G. Eden, “Continua in the visible absorption spectrum of K2,” J. Opt. Soc. Am. B2(5), 721–728 (1985). [CrossRef]
  2. C. R. Vidal, “Vapor cells and heat-pipes,” Exp. Methods Phys. Sci.29B, 67–83 (1996).
  3. B. Steffes, X. Li, A. Mellinger, and C. R. Vidal, “Heat-pipe oven for large column densities with a well-defined optical path length,” Appl. Phys. B62(1), 87–90 (1996). [CrossRef]
  4. Y. Tamir and R. Shuker, “Novel design of hot windows in saturated metal vapor absorption experiments,” Rev. Sci. Instrum.63(2), 1834–1837 (1992). [CrossRef]
  5. A. Gallagher, “Line shapes and radiation transfer,” in Springer Handbook of Atomic, Molecular and Optical Physics, G. W. F. Drake, ed. (Springer, 2006), pp. 279–293.
  6. S. Vdović, D. Sarkisyan, and G. Pichler, “Absorption spectrum of rubidium and cesium dimers by compact computer operated spectrometer,” Opt. Commun.268(1), 58–63 (2006). [CrossRef]
  7. S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat, “Potassium ground-state scattering parameters and Born-Oppenheimer potentials from molecular spectroscopy,” Phys. Rev. A78(1), 012503 (2008). [CrossRef]
  8. D. Aumiler, T. Ban, and G. Pichler, “Femtosecond laser-induced cone emission in dense cesium vapor,” Phys. Rev. A71(6), 063803 (2005). [CrossRef]
  9. H. Skenderović, T. Ban, N. Vujičić, D. Aumiler, S. Vdović, and G. Pichler, “Cone emission induced by femtosecond excitation in rubidium vapor,” Phys. Rev. A77(6), 063816 (2008). [CrossRef]
  10. D. Sarkisyan, B. D. Paul, S. T. Cundiff, E. A. Gibson, and A. Gallagher, “Conical emission by 2-ps excitation of potassium vapor,” J. Opt. Soc. Am. B18(2), 218–224 (2001). [CrossRef]
  11. W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review,” Prog. Quantum Electron.36(1), 4–28 (2012). [CrossRef]
  12. B. V. Zhdanov and R. J. Knize, “Alkali lasers for magnetic resonance imaging,” Cent. Eur. J. Phys.8(2), 184–193 (2010). [CrossRef]
  13. L. D. Turner, V. Karaganov, P. J. O. Teubner, and R. E. Scholten, “Sub-Doppler bandwidth atomic optical filter,” Opt. Lett.27(7), 500–502 (2002). [CrossRef] [PubMed]
  14. R. B. Miles, A. P. Yalin, Z. Tang, S. H. Zaidi, and J. N. Forkey, “Flow field imaging through sharp-edged atomic and molecular ‘notch’ filters,” Meas. Sci. Technol.12(4), 442–451 (2001). [CrossRef]
  15. A. Cerè, V. Parigi, M. Abad, F. Wolfgramm, A. Predojević, and M. W. Mitchell, “Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor,” Opt. Lett.34(7), 1012–1014 (2009). [CrossRef] [PubMed]
  16. C. Vadla, R. Beuc, V. Horvatic, M. Movre, A. Quentmeier, and K. Niemax, “Comparison of theoretical and experimental red and near infrared absorption spectra in overheated potassium vapour,” Eur. Phys. J. D37(1), 37–49 (2006). [CrossRef]
  17. G. Pichler, S. Milosevic, D. Viza, and R. Beuc, “Diffuse bands in the visible absorption spectra of dense alkali vapours,” J. Phys. B16(24), 4619–4631 (1983). [CrossRef]
  18. S. Milošvić, G. Pichler, R. Düren, and E. Hasselbrink, “Fluorescence studies of the K2 diffuse band at 572.5 nm,” Chem. Phys. Lett.128(2), 145–149 (1986). [CrossRef]
  19. R. Beuc, S. Milosevic, M. Movre, G. Pichler, and D. Veza, “Satellite bands in the far blue wing of the potassium first resonance doublet,” Fizika14, 345–349 (1982).
  20. A. N. Nesmeyanov, Vapor Pressure of the Chemical Elements, R. Gray, ed. (Elsevier, 1963).
  21. V. Horvatic, C. Vadla, and M. Movre, “The collisional cross sections for excitation energy transfer in Rb*(5P3/2)+K(4S1/2)→Rb(5S1/2)+K*(4PJ) processes,” Z. Phys. D27(2), 123–130 (1993). [CrossRef]
  22. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett.28(23), 2336–2338 (2003). [CrossRef] [PubMed]
  23. H. Wang, Z. Yang, W. Hua, X. Xu, and Q. Lu, “Choice of alkali element for DPAL scaling, a numerical study,” Opt. Commun.296, 101–105 (2013). [CrossRef]
  24. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd ed. (Elsevier, 2006).
  25. L. R. Pendrill, M. Pettersson, and U. Österberg, “Spectral variation of collisional ionization of excited potassium atoms,” Phys. Scr.29(4), 313–316 (1984). [CrossRef]
  26. D. Pentaris, T. Efthimiopoulos, N. Merlemis, and V. Vaičaitis, “Axial and conical parametric emissions from potassium atoms under two-photon fs excitation,” Appl. Phys. B98(2–3), 383–390 (2010). [CrossRef]
  27. Y. Silberberg, “Collapse of optical pulses,” Opt. Lett.15(22), 1282–1284 (1990). [CrossRef] [PubMed]
  28. J. W. Cooper, “Photoionization from outer atomic subshells. A model study,” Phys. Rev.128(2), 681–693 (1962). [CrossRef]
  29. I. M. Savukov, “Quasicontinuum relativistic many-body perturbation theory photoionization cross sections of Na, K, Rb, and Cs,” Phys. Rev. A76(3), 032710 (2007). [CrossRef]
  30. K. Afrousheh, M. Marafi, J. Kokaj, Y. Makdisi, and J. Mathew, “Spectroscopic studies of 5d3/2nd 1D0,2 autoionization lines of barium under collision with rare gases,” Phys. Rev. A85(5), 052517 (2012). [CrossRef]
  31. Y. Makdisi, J. Kokaj, K. Afrousheh, J. Mathew, R. Nair, and G. Pichler, “Multiphoton laser ionization for energy conversion in barium vapor,” Opt. Commun.290, 95–99 (2013). [CrossRef]
  32. V. Vaičaitis and E. Gaižauskas, “Conical fluorescence emission from sodium vapor excited with tunable femtosecond light pulses,” Phys. Rev. A75(3), 033808 (2007). [CrossRef]
  33. N. Vujičić, H. Skenderović, T. Ban, D. Aumiler, and G. Pichler, “Low-density plasma channels generated by femtosecond pulses,” Appl. Phys. B82(3), 377–382 (2006). [CrossRef]
  34. H. Skenderović, I. Labazan, S. Milosević, and G. Pichler, “Laser-ignited glow discharge in lithium vapor,” Phys. Rev. A62(5), 052707 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited