OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30336–30349

Theory and experiment of submonolayer quantum-dot metal-cavity surface-emitting microlasers

Pengfei Qiao, Chien-Yao Lu, Dieter Bimberg, and Shun Lien Chuang  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 30336-30349 (2013)
http://dx.doi.org/10.1364/OE.21.030336


View Full Text Article

Enhanced HTML    Acrobat PDF (2097 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical model for metal-cavity submonolayer quantum-dot surface-emitting microlasers, which operate at room temperature under electrical injection. Size-dependent lasing characteristics are investigated experimentally and theoretically with device radius ranging from 5 μm to 0.5 μm. The quantum dot emission and cavity optical properties are used in a rate-equation model to study the laser light output power vs. current behavior. Our theory explains the observed size-dependent physics and provides a guide for future device size reduction.

© 2013 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.3948) Lasers and laser optics : Microcavity devices
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 1, 2013
Revised Manuscript: November 19, 2013
Manuscript Accepted: November 19, 2013
Published: December 3, 2013

Citation
Pengfei Qiao, Chien-Yao Lu, Dieter Bimberg, and Shun Lien Chuang, "Theory and experiment of submonolayer quantum-dot metal-cavity surface-emitting microlasers," Opt. Express 21, 30336-30349 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-30336


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys.18, 2329–2330 (1979). [CrossRef]
  2. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18, 8790–8799 (2010). [CrossRef] [PubMed]
  3. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4, 395–399 (2010). [CrossRef]
  4. C.-Y. Lu, C.-Y. Ni, M. Zhang, S. L. Chuang, and D. Bimberg, “Metal-cavity surface-emitting microlasers with size reduction: theory and experiment,” IEEE J. Sel. Top. Quantum Electron.19, 1701809 (2013).
  5. K. Ding, Z. Liu, L. Yin, H. Wang, R. Liu, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Ntzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett.98, 231108 (2011). [CrossRef]
  6. D. Bimberg, “Quantum dot based nanophotonics and nanoelectronics,” Electron. Lett.44, 168–171 (2008). [CrossRef]
  7. S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, Y. M. Shernyakov, I. P. Soshnikov, D. A. Livshits, I. S. Tarasov, D. A. Bedarev, B. V. Volovik, M. V. Maximov, A. F. Tsatsulnikov, N. N. Ledentsov, P. S. Kopev, D. Bimberg, and Z. I. Alferov, “0.94 μm diode lasers based on Stranski-Krastanow and sub-monolayer quantum dots,” Semicond. Sci. Technol.15, 1061 (2000). [CrossRef]
  8. F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85 °C error-free operation of vcsels based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13, 1302–1308 (2007). [CrossRef]
  9. J. Kim and S. L. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers,” IEEE J. Quantum Electron.42, 942–952 (2006). [CrossRef]
  10. T. Baba, T. Hamano, F. Koyama, and K. Iga, “Spontaneous emission factor of a microcavity DBR surface-emitting laser,” IEEE J. Quantum Electron.27, 1347–1358 (1991). [CrossRef]
  11. F. Hopfer, A. Mutig, M. Kuntz, G. Fiol, D. Bimberg, N. N. Ledentsov, V. A. Shchukin, S. S. Mikhrin, D. L. Livshits, I. L. Krestnikov, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Single-mode submonolayer quantum-dot vertical-cavity surface-emitting lasers with high modulation bandwidth,” Appl. Phys. Lett.89, 141106 (2006). [CrossRef]
  12. A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As/GaAs quantum dots,” Phys. Rev. B76, 205324 (2007). [CrossRef]
  13. G. Bester, X. Wu, D. Vanderbilt, and A. Zunger, “Importance of second-order piezoelectric effects in zinc-blende semiconductors,” Phys. Rev. Lett.96, 187602 (2006). [CrossRef] [PubMed]
  14. S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 2009), Chap. 4, 9, and 11.
  15. C. Pryor, “Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations,” Phys. Rev. B57, 7190–7195 (1998). [CrossRef]
  16. G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, 1974).
  17. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for IIIV compound semiconductors and their alloys,” J. Appl. Phys.89, 5815–5875 (2001). [CrossRef]
  18. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica34, 149–154 (1967). [CrossRef]
  19. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  20. L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  21. J. M. Gérard and B. Gayral, “InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics,” Physica E9, 131–139 (2001). [CrossRef]
  22. Y. Yamamoto, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A44, 657–668 (1991). [CrossRef] [PubMed]
  23. S.-W. Chang, C.-Y. A. Ni, and S. L. Chuang, “Theory for bowtie plasmonic nanolasers,” Opt. Express16, 10580–10595 (2008). [CrossRef] [PubMed]
  24. C.-Y. Lu, S. L. Chuang, and D. Bimberg, “Metal-cavity surface-emitting nanolasers,” IEEE J. Quantum Electron.49, 114–121 (2013). [CrossRef]
  25. S.-W. Chang, C.-Y. Lu, S. L. Chuang, T. D. Germann, U. W. Pohl, and D. Bimberg, “Theory of metal-cavity surface-emitting microlasers and comparison with experiment,” IEEE J. Sel. Top. Quantum Electron.17, 1681–1692 (2011). [CrossRef]
  26. P. V. Mena, J. J. Morikuni, S.-M. Kang, A. V. Harton, and K. W. Wyatt, “A comprehensive circuit-level model of vertical-cavity surface-emitting lasers,” J. Lightwave Technol.17, 2612–2632 (1999). [CrossRef]
  27. S.-W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron.8, 1014–1023 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited