OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30350–30357

Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm

Matthew Streshinsky, Ran Ding, Yang Liu, Ari Novack, Yisu Yang, Yangjin Ma, Xiaoguang Tu, Edward Koh Sing Chee, Andy Eu-Jin Lim, Patrick Guo-Qiang Lo, Tom Baehr-Jones, and Michael Hochberg  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 30350-30357 (2013)
http://dx.doi.org/10.1364/OE.21.030350


View Full Text Article

Enhanced HTML    Acrobat PDF (1831 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The wavelength band near 1300 nm is attractive for many telecommunications applications, yet there are few results in silicon that demonstrate high-speed modulation in this band. We present the first silicon modulator to operate at 50 Gbps near 1300 nm. We demonstrate an open eye at this speed using a differential 1.5 Vpp signal at 0 V reverse bias, achieving an energy efficiency of 450 fJ/bit.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(250.7360) Optoelectronics : Waveguide modulators

ToC Category:
Integrated Optics

History
Original Manuscript: October 4, 2013
Revised Manuscript: November 18, 2013
Manuscript Accepted: November 19, 2013
Published: December 3, 2013

Citation
Matthew Streshinsky, Ran Ding, Yang Liu, Ari Novack, Yisu Yang, Yangjin Ma, Xiaoguang Tu, Edward Koh Sing Chee, Andy Eu-Jin Lim, Patrick Guo-Qiang Lo, Tom Baehr-Jones, and Michael Hochberg, "Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm," Opt. Express 21, 30350-30357 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-30350


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010). [CrossRef]
  2. T. Baehr-Jones, T. Pinguet, P. G.-Q. Lo, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumors of silicon photonics,” Nat. Photonics6(4), 206–208 (2012). [CrossRef]
  3. M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large scale silicon photonics,” Opt. Photonics News24(9), 32–39 (2013). [CrossRef]
  4. X. Tu, T.-Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, and G.-Q. Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Opt. Express21(10), 12776–12782 (2013). [CrossRef] [PubMed]
  5. X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization,” Opt. Express21(4), 4116–4125 (2013). [CrossRef] [PubMed]
  6. T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012). [CrossRef] [PubMed]
  7. J. Ding, R. Ji, L. Zhang, and L. Yang, “Electro-optical response analysis of a 40 Gb/s silicon Mach-Zehnder optical modulator,” J. Lightwave Technol.31(14), 2434–2440 (2013). [CrossRef]
  8. M. Streshinsky, A. Ayazi, Z. Xuan, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive,” Opt. Express21(3), 3818–3825 (2013). [CrossRef] [PubMed]
  9. F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010). [CrossRef]
  10. J. Fujikata, S. Takahashi, M. Takahashi, and T. Horikawa, “High speed and highly efficient Si optical modulator with MOS junction for 1.55 µm and 1.3 µm wavelengths,” in IEEE 10th International Conference on Group IV Photonics (IEEE, Seoul, S. Korea, 2013), pp. 65–66.
  11. T. Koonen, “Fiber to the home/fiber to the premises: what, where and when?” Proc. IEEE94(5), 911–934 (2006). [CrossRef]
  12. Y. Tang, J. Peters, and J. E. Bowers, “1.3 μm hybrid silicon electroabsorption modulator with bandwidth beyond 67 GHz,” in Optical Fiber Communication Conference (Optical Society of America, Los Angeles, California, 2012), paper PDP5A.5. [CrossRef]
  13. L. Lever, Y. Hu, M. Myronov, X. Liu, N. Owens, F. Y. Gardes, I. P. Marko, S. J. Sweeney, Z. Ikonić, D. R. Leadley, G. T. Reed, and R. W. Kelsall, “Modulation of the absorption coefficient at 1.3 μm in Ge/SiGe multiple quantum well heterostructures on silicon,” Opt. Lett.36(21), 4158–4160 (2011). [CrossRef] [PubMed]
  14. S. Jain, Y. Tang, S. Srinivasan, M. J. R. Heck, and J. E. Bowers, “Integrated high speed hybrid silicon transmitter,” in SPIE OPTO (International Society for Optics and Photonics, San Francisco, California, 2013), 863016.
  15. T. Baehr-Jones, “OpSIS-IME OI50 Process – Performance Summary,” http://opsisfoundry.org/wp-content/uploads/opsis_oi50_performance_summary_10_8_13.pdf .
  16. J.-M. Liu, Photonic Devices (Cambridge University, 2005), Chap. 6.
  17. J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, and R. Min, “Low-voltage, high-extinction-ratio, Mach-Zehnder silicon optical modulator for CMOS-compatible integration,” Opt. Express20(3), 3209–3218 (2012). [CrossRef] [PubMed]
  18. T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010). [CrossRef]
  19. http://opsisfoundry.org/
  20. A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E.-J. Lim, G.-Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in IEEE 10th International Conference on Group IV Photonics (IEEE, Seoul, S. Korea, 2013), pp. 7–8. [CrossRef]
  21. J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express18(16), 16902–16928 (2010). [CrossRef] [PubMed]
  22. H. Yu and W. Bogaerts, “An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators,” J. Lightwave Technol.30(11), 1602–1609 (2012). [CrossRef]
  23. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007). [CrossRef]
  24. F. Y. Gardes, D. J. Thomson, N. G. Emerson, and G. T. Reed, “40 Gb/s silicon photonics modulator for TE and TM polarisations,” Opt. Express19(12), 11804–11814 (2011). [CrossRef] [PubMed]
  25. D. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photonics Technol. Lett.24(4), 234–236 (2012). [CrossRef]
  26. M. Ziebell, D. Marris-Morini, G. Rasigade, J.-M. Fédéli, P. Crozat, E. Cassan, D. Bouville, and L. Vivien, “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express20(10), 10591–10596 (2012). [CrossRef] [PubMed]
  27. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J. M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express19(12), 11507–11516 (2011). [CrossRef] [PubMed]
  28. P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express20(6), 6163–6169 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited