OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30392–30400

Achieving enhanced gain in photorefractive polymers by eliminating electron contributions using large bias fields

C. M. Liebig, S. H. Buller, P. P. Banerjee, S. A. Basun, P.-A. Blanche, J. Thomas, C. W. Christenson, N. Peyghambarian, and D. R. Evans  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 30392-30400 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (919 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photorefractive polymers have been extensively studied for over two decades and have found applications in holographic displays and optical image processing. The complexity of these materials arises from multiple charge contributions, for example, leading to the formation of competing photorefractive gratings. It has been recently shown that in a photorefractive polymer at relatively moderate applied electric fields the primary charge carriers (holes) establish an initial grating, followed by a subsequent competing grating (electrons) resulting in a decreased two-beam coupling and diffraction efficiencies. In this paper, it is shown that with relatively large sustainable bias fields, the two-beam coupling efficiency is enhanced owing to a decreased electron contribution. These results also explain the cause of dielectric breakdown experienced under large bias fields. Our conclusions are supported by self-pumped transient two-beam coupling and photocurrent measurements as a function of applied bias fields at different wavelengths.

© 2013 Optical Society of America

OCIS Codes
(160.5320) Materials : Photorefractive materials
(160.5470) Materials : Polymers
(190.7070) Nonlinear optics : Two-wave mixing

ToC Category:

Original Manuscript: August 12, 2013
Revised Manuscript: November 15, 2013
Manuscript Accepted: November 19, 2013
Published: December 4, 2013

C. M. Liebig, S. H. Buller, P. P. Banerjee, S. A. Basun, P.-A. Blanche, J. Thomas, C. W. Christenson, N. Peyghambarian, and D. R. Evans, "Achieving enhanced gain in photorefractive polymers by eliminating electron contributions using large bias fields," Opt. Express 21, 30392-30400 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. E66, 1846–1849 (1991).
  2. P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010). [CrossRef] [PubMed]
  3. A. Grunnet-Jepsen, C. L. Thompson, and W. E. Moerner, “Systematics of two-wave mixing in a photorefractive polymer,” J. Opt. Soc. Am. B15, 905–913 (1998). [CrossRef]
  4. W. S. Kim, J. W. Lee, and J. K. Park, “Enhancement of the recording stability of a photorefractive polymer composite by the introduction of a trapping layer,” Appl. Phys. Lett.83, 3045–3047 (2003). [CrossRef]
  5. C. W. Christenson, “Improving sensitivity of photorefractive polymer composites for holographic display applicaitons,” Ph.D. thesis, The University of Arizona (2011).
  6. P. P. Banerjee, S. H. Buller, C. M. Liebig, G. Cook, D. R. Evans, P. A. Blanche, C. W. Christenson, J. Thomas, and N. Peyghambarian, “Time dynamics of self-pumped reection gratings in a photorefractive polymer,” J. Appl. Phys.111, 013108 (2012). [CrossRef]
  7. W. E. Moerner and S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev.94, 127–155 (1994). [CrossRef]
  8. M. Salvador, F. Gallego-Gomez, S. Köber, and K. Meerholz, “Bipolar charge transport in an organic photorefractive composite,” Appl. Phys. Lett.90, 154102 (2007). [CrossRef]
  9. L. Wang, M. K. Ng, and L. Yu, “Photorefraction and complementary grating competition in bipolar transport molecular material,” Phys. Rev. B62, 4973–4984 (2000). [CrossRef]
  10. M. C. Bashaw, T. P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Introduction, revelation, and evolution of complementarygratings in photorefractive bismuth silicon oxide,” Phys. Rev. B42, 5641–5649 (1990). [CrossRef]
  11. D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron.38, 1661–1665 (2002). [CrossRef]
  12. S. M. Silence, C. A. Walsh, J. C. Scott, T. J. Matray, R. J. Twieg, E. Hache, G. C. Bjorklund, and W. E. Moerner, “Subsecond grating growth in a photorefractive polymer,” Opt. Lett.17, 1107–1109 (1992). [CrossRef] [PubMed]
  13. A. Veniaminov, T. Jahr, H. Sillescu, and E. Bartsch, “Length scale dependent probe diffusion in drying acrylate latex films,” Macromolecules35, 808–819 (2002). [CrossRef]
  14. N. V. Kukhtarev, T. V. Kukhtareva, H. A. Abdeldayem, W. K. Witherow, B. G. Penn, D. O. Frazier, and A. V. Veniaminov, “Holographic recording in polymeric materials with diffusional amplification,” Proc. SPIE4459, 29–38 (2001). [CrossRef]
  15. A. V. Veniaminov and E. Bartsch, “Diffusional enhancement of holograms: phenanthre-nequinone in polycarbonate,” J. Opt. A Pure Appl. Opt.4, 387–392 (2002). [CrossRef]
  16. E. Bartsch, T. Jahr, T. Eckert, H. Sillescu, and A. Veniaminov, “Scale dependent diffusion in latex films studied by photoinduced grating relaxation technique,” Macromol. Symp.191, 151–166 (2003). [CrossRef]
  17. J. W. Oh, C. Lee, and N. Kim, “Infuence of chromophore content on the steady-state space charge formation of poly[methyl-3-(9-carbazolyl) propylsiloxane]-based polymeric photorefractive composites,” J. Appl. Phys.104, 073709 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited