OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30415–30432

Performance evaluation of a 1.6-µm methane DIAL system from ground, aircraft and UAV platforms

Tamer F. Refaat, Syed Ismail, Amin R. Nehrir, John W. Hair, James H. Crawford, Ira Leifer, and Timothy Shuman  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 30415-30432 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Methane is an efficient absorber of infrared radiation and a potent greenhouse gas with a warming potential 72 times greater than carbon dioxide on a per molecule basis. Development of methane active remote sensing capability using the differential absorption lidar (DIAL) technique enables scientific assessments of the gas emission and impacts on the climate. A performance evaluation of a pulsed DIAL system for monitoring atmospheric methane is presented. This system leverages a robust injection-seeded pulsed Nd:YAG pumped Optical Parametric Oscillator (OPO) laser technology operating in the 1.645 µm spectral band. The system also leverages an efficient low noise, commercially available, InGaAs avalanche photo-detector (APD). Lidar signals and error budget are analyzed for system operation on ground in the range-resolved DIAL mode and from airborne platforms in the integrated path DIAL (IPDA) mode. Results indicate system capability of measuring methane concentration profiles with <1.0% total error up to 4.5 km range with 5 minute averaging from ground. For airborne IPDA, the total error in the column dry mixing ratio is less than 0.3% with 0.1 sec average using ground returns. This system has a unique capability of combining signals from the atmospheric scattering from layers above the surface with ground return signals, which provides methane column measurement between the atmospheric scattering layer and the ground directly. In such case 0.5% and 1.2% total errors are achieved with 10 sec average from airborne platforms at 8 km and 15.24 km altitudes, respectively. Due to the pulsed nature of the transmitter, the system is relatively insensitive to aerosol and cloud interferences. Such DIAL system would be ideal for investigating high latitude methane releases over polar ice sheets, permafrost regions, wetlands, and over ocean during day and night. This system would have commercial potential for fossil fuel leaks detection and industrial monitoring applications.

© 2013 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: September 6, 2013
Revised Manuscript: November 14, 2013
Manuscript Accepted: November 15, 2013
Published: December 4, 2013

Tamer F. Refaat, Syed Ismail, Amin R. Nehrir, John W. Hair, James H. Crawford, Ira Leifer, and Timothy Shuman, "Performance evaluation of a 1.6-µm methane DIAL system from ground, aircraft and UAV platforms," Opt. Express 21, 30415-30432 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. National Research Council, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (The National Academies Press, 2007).
  2. NASA OCO-2 Mission, http://science.nasa.gov/missions/oco-2/ .
  3. A. Michalak, R. Jackson, G. Marland, and C. Sabine, A U.S. Carbon Cycle Science Plan (University Corporation for Atmospheric Research, Boulder, Colorado, 2011).
  4. C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech.4(10), 2195–2211 (2011). [CrossRef]
  5. S. Solomon, D. Qin, M. Manning, M. Marquis, K. Averyt, M. Tignor, H. Miller, and Z. Chen, Climate Change 2007: The Physical Science Basis, Working Group I Contribution to the Fourth Assessment Report of the IPCC (Cambridge University Press, New York, New York, 2007).
  6. ASENDS Science Definition and Planning Workshop Report (University of Michigan, 2008).
  7. National Research Council, Frontiers in Understanding Climate Change and Polar Ecosystems, Workshop Report, (The National Academies Press, 2011).
  8. W. Dillon, Gas (Methane) Hydrates - A New Frontier, Energy and Marine Geology, USGS (U.S. Department of Energy Government Printing Office, 1992).
  9. M. Khalil, Atmospheric Methane: Sources, Sinks, and Role in Global Change, NATO ASI Series I: Global Environmental Change, (Springer-Verlag, 1993).
  10. B. Metz, O. Davidson, P. Bosch, R. Dave, and L. Meyer, Climate Change 2007: Mitigation of Climate Change, Working Group III Contribution to the Fourth Assessment Report of the IPCC (Cambridge University Press, 2007).
  11. X. Xiong, C. Barnet, E. Maddy, C. Sweeney, X. Liu, L. Zhou, and M. Goldberg, “Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS),” J. Geophys. Res.113, G00A01 (2007).
  12. M. Buchwitz, R. De Beek, S. Noel, J. Burrows, H. Bovensmann, O. Schneising, I. Khlystova, M. Bruns, H. Bremer, P. Bergamaschi, S. Korner, and M. Heimann, “Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS: Version 0.5 CO and CH4 and impact of calibration improvements on CO2 retrieval,” Atmos. Chem. Phys.6(9), 2727–2751 (2006). [CrossRef]
  13. T. Yokota, Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov, “Global concentrations of CO2 and CH4 retrieved from GOSAT: First preliminary results,” SOLA5, 160–163 (2009). [CrossRef]
  14. E. S. A. The, CarbonSat mission, http://www.astrium.eads.net/en/press_centre/carbonsat-on-the-trail-of-greenhouse-gases.html .
  15. Y. Yoshida, Y. Ota, N. Eguchi, N. Kikuchi, K. Nobuta, H. Tran, I. Morino, and T. Yokota, “Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite,” Atmos. Meas. Tech.4(4), 717–734 (2011). [CrossRef]
  16. S. Ismail, J. Crawford, I. Leifer, F. Hovis, R. Burnham, J. Hair, T. Refaat, A. Notari, J. Collins, S. Kooi, M. Hardesty, M. Devi, C. Benner, L. Brown, K. Sung, G. Diskin, A. Fix, and N. Abedin, “Development of a 1.65 μm pulsed laser DIAL System to map atmospheric CH4 distributions,” AGU Fall Meeting, A23B–0247, San Francisco, CA, (2010).
  17. T. Refaat and S. Ismail, “A feasibility study of atmospheric methane DIAL measurements at 1.65 micron spectral region,” EGU General Assembly13, 9675 (2011).
  18. R. Measures, Laser Remote Sensing, (John Wiley & Sons, 1984).
  19. S. Ismail and E. V. Browell, “Airborne and Spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt.28(17), 3603–3615 (1989). [CrossRef] [PubMed]
  20. V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt.37(18), 3825–3844 (1998). [CrossRef] [PubMed]
  21. E. Browell, M. Fenn, C. Butler, W. Grant, V. Brackett, J. Hair, M. Avery, R. Newell, Y. Hu, H. Fuelberg, D. Jacob, B. Anderson, E. Atlas, D. Blake, W. Brune, J. Dibb, A. Fried, B. Heikes, G. Sachse, S. Sandholm, H. Singh, R. Talbot, S. Vay, R. Weber, and K. Bartlett, “Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late-winter/early-spring,” J. Geophys. Res.108(D20), 8805 (2003). [CrossRef]
  22. R. Alvarez, C. Senff, A. Langford, A. Weickmann, D. Law, J. Machol, D. Merritt, R. Marchbanks, S. Sandberg, W. Brewer, R. Hardesty, and R. Banta, “Development and application of a compact, tunable, solid-state airborne ozone lidar system for boundary layer profiling,” J. Atmos. Ocean. Technol.28(10), 1258–1272 (2011). [CrossRef]
  23. A. Fix, M. Wirth, A. Meister, G. Ehret, M. Pesch, and D. Weidauer, “Tunable ultraviolet optical parametric oscillator for differential absorption lidar measurements of tropospheric ozone,” Appl. Phys. B75(2-3), 153–163 (2002). [CrossRef]
  24. T. Refaat, S. Ismail, G. Koch, M. Rubio, T. Mack, A. Notari, J. Collins, J. Lewis, R. De Young, Y. Choi, N. Abedin, and U. Singh, “Backscatter 2-μm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Rem. Sens.49(1), 572–580 (2011). [CrossRef]
  25. T. Shuman, R. Burnham, A. Nehrir, S. Ismail, J. Hair, and T. Refaat, “Efficient 1.6 micron laser source for methane DIAL,” Proc. SPIE8872, 88720A (2013). [CrossRef]
  26. J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Isquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt.47(36), 6734–6752 (2008). [CrossRef] [PubMed]
  27. S. Burton, R. Ferrare, C. Hostetler, J. Hair, R. Rogers, M. Obland, C. Butler, A. Cook, D. Harper, and K. Froyd, “Aerosol classification using airborne High Spectral Resolution Lidar measurements - methodology and examples,” Atmos. Meas. Tech.5(1), 73–98 (2012). [CrossRef]
  28. A. Scarino, M. Obland, J. Fast, S. Burton, R. Ferrare, C. Hostetler, L. Berg, B. Lefer, C. Haman, J. Hair, R. Rogers, C. Butler, A. Cook, and D. Harper, “Comparison of mixed layer heights from airborne high spectral resolution lidar, ground-based measurements, and the WRF-Chem model during CalNex and CARES,” Atmos. Chem. Phys. Discuss.13(5), 13721–13772 (2013). [CrossRef]
  29. E. Saiki, C. Weimer, and M. Stephens, “An investigation of high spectral resolution lidar measurements over the ocean,” Proc. SPIE8159, 81590F (2011). [CrossRef]
  30. R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B31(2), 97–105 (1983). [CrossRef]
  31. K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire, and M. A. Krainak, “Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide,” Appl. Opt.50(7), 1047–1056 (2011). [CrossRef] [PubMed]
  32. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4 and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B90(3-4), 593–608 (2008). [CrossRef]
  33. L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenko, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwer, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.110(9-10), 533–572 (2009). [CrossRef]
  34. S. Drayson, “Rapid computation of the Voigt profile,” J. Quant. Spectrosc. Radiat. Transf.16(7), 611–614 (1976). [CrossRef]
  35. G. Anderson, S. Clough, F. Kneizys, J. Chetwynd, and E. Shettle, “AFGL atmospheric constituent profiles (0-120km),” Air Force Geophysics Laboratory, AFGL-TR-86–0110, 954 (1986).
  36. L. Elterman, “UV, visible and IR attenuation for altitude to 50 km,” Air Force Cambridge Research Laboratories, AFCRL-68–0153, 285 (1968).
  37. S. Ismail, R. Ferrare, E. Browell, S. Kooi, J. Dunion, G. Heymsfield, A. Notari, C. Butler, S. Burton, M. Fenn, T. Krishnamurti, M. Biswas, G. Chen, and B. Anderson, “LASE measurements of water vapor, aerosol, and cloud distributions in Saharan air layers and tropical disturbances,” J. Atmos. Sci.67(4), 1026–1047 (2010). [CrossRef]
  38. D. Bruneau, F. Gibert, P. H. Flamant, and J. Pelon, “Complementary study of differential absorption lidar optimization in direct and heterodyne detections,” Appl. Opt.45(20), 4898–4908 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited