OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30481–30491

Suppression of transverse stimulated Raman scattering with laser-induced damage array in a large-aperture potassium dihydrogen phosphate crystal

Wei Han, Fang Wang, Lidan Zhou, Fuquan Li, Bin Feng, Huabao Cao, Junpu Zhao, Sheng Li, Kuixing Zheng, Xiaofeng Wei, Mali Gong, and Wanguo Zheng  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 30481-30491 (2013)
http://dx.doi.org/10.1364/OE.21.030481


View Full Text Article

Enhanced HTML    Acrobat PDF (1288 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A laser-induced damage array composed of numerous pinpoints is generated in a large-aperture KDP crystal to suppress the transverse stimulated Raman scattering (TSRS). The 36 cm × 8.5 mm × 7 mm damage array is used to block the propagation of the TSRS photons within the crystal and decrease the TSRS gain length. Then several series of experiments were conducted on a large-aperture laser system to test this method and experimental results show that the amplification of TSRS is significantly suppressed by the laser-induced damage array.

© 2013 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.3380) Materials : Laser materials
(290.5910) Scattering : Scattering, stimulated Raman

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 30, 2013
Revised Manuscript: November 1, 2013
Manuscript Accepted: November 6, 2013
Published: December 4, 2013

Citation
Wei Han, Fang Wang, Lidan Zhou, Fuquan Li, Bin Feng, Huabao Cao, Junpu Zhao, Sheng Li, Kuixing Zheng, Xiaofeng Wei, Mali Gong, and Wanguo Zheng, "Suppression of transverse stimulated Raman scattering with laser-induced damage array in a large-aperture potassium dihydrogen phosphate crystal," Opt. Express 21, 30481-30491 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-30481


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility,” Opt. Eng.43(12), 2841–2853 (2004). [CrossRef]
  2. H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, D. Y. Fan, and Z. Q. Lin, “Status of the SG-III solid state laser project,” Proc. SPIE3492(25), 25–27 (1998).
  3. J. M. Eggleston and M. J. Kushner, “Stimulated Brillouin scattering parasitics in large optical windows,” Opt. Lett.12(6), 410–412 (1987). [CrossRef] [PubMed]
  4. J. R. Murray, J. R. Smith, R. B. Ehrlich, D. T. Kyrazis, C. E. Thompson, T. L. Weiland, and R. B. Wilcox, “Experimental observation and suppression of transverse stimulated Brillouin scattering in large optical components,” J. Opt. Soc. Am. B6(12), 2402–2422 (1989). [CrossRef]
  5. W. L. Smith, M. A. Henesian, and F. P. Milanovich, “Spontaneous and Stimulated Raman Scattering in KDP and Index-Matching Fluids,” 1983 Laser Program Annual Report (UCRL-50021–83), 6–61 to 6–69, Lawrence Livermore National Laboratory, Livermore CA (1984).
  6. S. A. Bel’kov, G. G. Kochemasov, S. M. Kulikov, V. N. Novikov, N. N. Rukavishnikov, S. A. Sukharev, I. N. Voronich, and A. I. Zaretskii, “Stimulated Raman Scattering in Frequency Conversion Crystals,” Proc. SPIE2633, 506–512 (1995). [CrossRef]
  7. C. E. Barker, R. A. Sacks, B. M. V. Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. Kyle, R. E. Ehrlich, and N. D. Nielsen, “Transverse Stimulated Raman Scattering in KDP,” Proc. SPIE2633, 501–505 (1995). [CrossRef]
  8. V. N. Novikov, S. A. Bel’kov, S. A. Buiko, I. N. Voronich, D. G. Efimov, A. I. Zaretsky, G. G. Kochemasov, A. G. Kravchenko, S. M. Kulikov, V. A. Lebedev, G. P. Okutin, N. N. Rukavishnikov, and S. A. Sukharev, “Transverse SRS in KDP and KD*P crystals,” Proc. SPIE3492, 1009–1018 (1999). [CrossRef]
  9. J. D. Yoreo, A. Burnham, and P. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev.47, 113–152 (2002). [CrossRef]
  10. P. J. Wegner, M. A. Henesian, D. R. Speck, C. Bibeau, R. B. Ehrlich, C. W. Laumann, J. K. Lawson, and T. L. Weiland, “Harmonic conversion of large-aperture 1.05- µm laser beams for inertial-confinement fusion research,” Appl. Opt.31(30), 6414–6426 (1992). [CrossRef] [PubMed]
  11. D. H. Munro, S. N. Dixit, A. B. Langdon, and J. R. Murray, “Polarization smoothing in a convergent beam,” Appl. Opt.43(36), 6639–6647 (2004). [CrossRef] [PubMed]
  12. H. Tanaka, M. Tokunaga, and I. Tatsuzaki, “Internal Modes and the Local Symmetry of PO4 Tetrahedra in K(H1-xDx)2PO4 by Raman Scattering,” Solid State Commun.49(2), 153–155 (1984). [CrossRef]
  13. W. Han, J. Wang, L. D. Zhou, K. Y. Li, F. Wang, F. Q. Li, and B. Feng, “Laser damage of the large aperture KDP third harmonic generation crystal due to Stimulated Raman Scattering,” Laser Phys.23, 116001 (2013). [CrossRef]
  14. D. T. Kyrazis and T. L. Weiland, “Determination of SBS induced damage limits in large fused silica optics for intense, time varying laser pulses,” Proc. SPIE1441, 469–477 (1991). [CrossRef]
  15. W. Han, W. Q. Huang, K. Y. Li, F. Wang, B. Feng, H. T. Jia, F. Q. Li, Y. Xiang, F. Jing, and W. G. Zheng, “Stimulated Brillouin Scattering Damage of Large-Aperture Fused Silica Grating,” Chin. Phys. Lett.27(12), 124205 (2010). [CrossRef]
  16. J. M. Sajer, “Stimulated Brillouin Scattering and Front Surface Damage,” Proc. SPIE5273, 129–135 (2004). [CrossRef]
  17. S. G. Demos, R. N. Raman, S. T. Yang, R. A. Negres, K. I. Schaffers, and M. A. Henesian, “Measurement of the Raman scattering cross section of the breathing mode in KDP and DKDP crystals,” Opt. Express19(21), 21050–21059 (2011). [CrossRef] [PubMed]
  18. V. Yu. Davydov and E. V. Chisler, “Influence of deuteration on the intensity in the Raman scattering spectrum and on the dynamics of hydrogen bonds in ferroelectric KH2PO4,” Sov. Phys. Solid State26, 616–619 (1984).
  19. A. K. Burnham, M. Runkel, M. D. Feit, A. M. Rubenchik, R. L. Floyd, T. A. Land, W. J. Siekhaus, and R. A. Hawley-Fedder, “Laser-induced damage in deuterated potassium dihydrogen phosphate,” Appl. Opt.42(27), 5483–5495 (2003). [CrossRef] [PubMed]
  20. G. H. Hu, Y. A. Zhao, S. T. Sun, L. D. Li, X. Sun, J. D. Shao, and Z. X. Fan, “One-on-One and R-on-One Tests on KDP and DKDP Crystals with Different Orientations,” Chin. Phys. Lett.26(8), 087801 (2009). [CrossRef]
  21. M. Runkel and A. K. Burnham, “Differences in bulk damage probability distributions between tripler and z-cuts of KDP and DKDP at 355 nm,” Proc. SPIE4347, 408–419 (2001). [CrossRef]
  22. X. Sun, Z. P. Wang, S. L. Wang, Q. T. Gu, X. G. Xu, Y. P. Li, and C. S. Fang, “Origin and relation of three kinds of scatter centers in KDP and DKDP crystals,” Cryst. Res. Technol.39(9), 796–799 (2004). [CrossRef]
  23. S. G. Demos, P. DeMange, R. A. Negres, and M. D. Feit, “Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals,” Opt. Express18(13), 13788–13804 (2010). [CrossRef] [PubMed]
  24. C. W. Carr, M. D. Feit, M. A. Johnson, and A. M. Rubenchik, “Complex morphology of laser-induced bulk damage in K2H(2−x)DxPO4 crystals,” Appl. Phys. Lett.89(13), 131901 (2006). [CrossRef]
  25. H. X. Deng, X. T. Zu, X. Xiang, and K. Sun, “Quantum Theory for Cold Avalanche Ionization in Solids,” Phys. Rev. Lett.105(11), 113603 (2010). [CrossRef] [PubMed]
  26. W. Kaiser and M. Maier, “Stimulated Rayleigh, Brillouin and Raman Spectroscopy,” in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. II.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited