OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30507–30520

Direct coupling of photonic modes and surface plasmon polaritons observed in 2-photon PEEM

Robert C. Word, Joseph P. S. Fitzgerald, and Rolf Könenkamp  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 30507-30520 (2013)
http://dx.doi.org/10.1364/OE.21.030507


View Full Text Article

Enhanced HTML    Acrobat PDF (2610 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the direct microscopic observation of optical energy transfer from guided photonic modes in an indium tin oxide (ITO) thin film to surface plasmon polaritons (SPP) at the surfaces of a single crystalline gold platelet. The photonic and SPP modes appear as an interference pattern in the photoelectron emission yield across the surface of the specimen. We explore the momentum match between the photonic and SPP modes in terms of simple waveguide theory and the three-layer slab model for bound SPP modes of thin metal films. We show that because the gold is thin (30-40 nm), two SPP modes exist and that momentum of the spatially confined asymmetric field mode coincides with the dominant mode of the ITO waveguide. The results demonstrate that photoemission electron microscopy (PEEM) can be an important tool for the observation of photonic to SPP interactions in the study of integrated photonic circuits.

© 2013 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(240.6675) Optics at surfaces : Surface photoemission and photoelectron spectroscopy

ToC Category:
Plasmonics

History
Original Manuscript: November 4, 2013
Revised Manuscript: November 26, 2013
Manuscript Accepted: November 27, 2013
Published: December 4, 2013

Citation
Robert C. Word, Joseph P. S. Fitzgerald, and Rolf Könenkamp, "Direct coupling of photonic modes and surface plasmon polaritons observed in 2-photon PEEM," Opt. Express 21, 30507-30520 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-30507


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Jans and Q. Huo, “Gold nanoparticle-enabled biological and chemical detection and analysis,” Chem. Soc. Rev.41(7), 2849–2866 (2012). [CrossRef] [PubMed]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  3. J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys.45(11), 113001 (2012). [CrossRef]
  4. T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett.109(12), 127701 (2012). [CrossRef] [PubMed]
  5. B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt.57(16), 1479–1497 (2010). [CrossRef]
  6. C. Y. Jun and I. Brener, “Optical manipulation with plasmonic beam shaping antenna structures,” Adv. Optoelectron.2012, 595646 (2012). [CrossRef]
  7. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater.25(24), 3264–3294 (2013). [CrossRef] [PubMed]
  8. J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull.37(08), 768–779 (2012). [CrossRef]
  9. X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009). [CrossRef] [PubMed]
  10. J. R. Krenn and J.-C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. R. Soc. London, Ser. A362, 739–756 (2004).
  11. P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett.13(6), 2558–2563 (2013). [CrossRef] [PubMed]
  12. M. Bosman, E. Ye, S.F. Tan, C.A. Nijhuis, J.K.W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep.3, 1312 (2012).
  13. T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano6(2), 1742–1750 (2012). [CrossRef] [PubMed]
  14. R. Vogelgesang and A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst (Lond.)135(6), 1175–1181 (2010). [CrossRef] [PubMed]
  15. L. Douillard and F. Charra, “Photoemission electron microscopy, a tool for plasmonics,” J. Electron Spectrosc. Relat. Phenom.189(Supplement), 24–29 (2013). [CrossRef]
  16. A. Grubisic, E. Ringe, C. M. Cobley, Y. Xia, L. D. Marks, R. P. Van Duyne, and D. J. Nesbitt, “Plasmonic near-electric field enhancement effects in ultrafast photoelectron emission: correlated spatial and laser polarization microscopy studies of individual Ag nanocubes,” Nano Lett.12(9), 4823–4829 (2012). [CrossRef] [PubMed]
  17. J. P. S. Fitzgerald, R. C. Word, S. D. Saliba, and R. Könenkamp, “Photonic near-field imaging in multiphoton photoemission electron microscopy,” Phys. Rev. B87(20), 205419 (2013). [CrossRef]
  18. C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Bauer, “Mapping surface plasmon polariton propagation via counter-propagating light pulses,” Opt. Express20(12), 12877–12884 (2012). [CrossRef] [PubMed]
  19. N. M. Buckanie, P. Kirschbaum, S. Sindermann, and F.-J. Heringdorf, “Interaction of light and surface plasmon polaritons in Ag islands studied by nonlinear photoemission microscopy,” Ultramicroscopy130, 49–53 (2013). [CrossRef] [PubMed]
  20. D. Bayer, C. Wiemann, O. Gaier, M. Bauer, and M. Aeschlimann, “Time-resolved 2PPE and time-resolved PEEM as a probe of LSP’s in silver nanoparticles,” J. Nanomater.2008, 249514 (2008). [CrossRef]
  21. C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A.-L. Baudrion, P.-M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C116(27), 14591–14598 (2012). [CrossRef]
  22. R. C. Word, T. Dornan, and R. Könenkamp, “Photoemission from localized surface plasmons in fractal metal nanostructures,” Appl. Phys. Lett.96(25), 251110 (2010). [CrossRef]
  23. A. Kubo, Y. S. Jung, H. K. Kim, and H. Petek, “Femtosecond microscopy of localized and propagating surface plasmons in silver gratings,” J. Phys. B40(11), S259–S272 (2007). [CrossRef]
  24. R. C. Word, J. P. S. Fitzgerald, and R. Konenkamp, “Direct imaging of optical diffraction in photoemission electron microscopy,” Appl. Phys. Lett.103(2), 021118 (2013). [CrossRef]
  25. E. Flück, M. Hammer, A. M. Otter, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Amplitude and phase evolution of optical fields inside periodic photonic structures,” J. Lightwave Technol.21(5), 1384–1393 (2003). [CrossRef]
  26. L. Stern, B. Desiatov, I. Goykhman, G. M. Lerman, and U. Levy, “Near field phase mapping exploiting intrinsic oscillations of aperture NSOM probe,” Opt. Express19(13), 12014–12020 (2011). [CrossRef] [PubMed]
  27. J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun.1(9), 150 (2010). [CrossRef] [PubMed]
  28. R. Könenkamp, R. C. Word, J. Fitzgerald, A. Nadarajah, and S. Saliba, “Controlled spatial switching and routing of surface plasmons in designed single-crystalline gold nanostructures,” Appl. Phys. Lett.101(14), 141114 (2012). [CrossRef]
  29. S. Kumar, Y.-W. Lu, A. Huck, and U. L. Andersen, “Propagation of plasmons in designed single crystalline silver nanostructures,” Opt. Express20(22), 24614–24622 (2012). [CrossRef] [PubMed]
  30. B. J. Wiley, D. J. Lipomi, J. Bao, F. Capasso, and G. M. Whitesides, “Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates,” Nano Lett.8(9), 3023–3028 (2008). [CrossRef] [PubMed]
  31. J.-P. Tetienne, A. Bousseksou, D. Costantini, Y. De Wilde, and R. Colombelli, “Design of an integrated coupler for the electrical generation of surface plasmon polaritons,” Opt. Express19(19), 18155–18163 (2011). [CrossRef] [PubMed]
  32. S.-Y. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun.282(23), 4513–4517 (2009). [CrossRef]
  33. H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express16(14), 10455–10464 (2008). [CrossRef] [PubMed]
  34. A. Abbas, M. J. Linman, and Q. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. Bioelectron.26(5), 1815–1824 (2011). [CrossRef] [PubMed]
  35. S. R. Seshadri, “Attenuated total reflection method of excitation of the surface polariton in the Kretschmann configuration,” J. Appl. Phys.70(7), 3647–3654 (1991). [CrossRef]
  36. W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol.8(4), 538–544 (1990). [CrossRef]
  37. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1(3), 484–588 (2009). [CrossRef]
  38. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986). [CrossRef] [PubMed]
  39. L. Wendler and R. Haupt, “Long‐range surface plasmon‐polaritons in asymmetric layer structures,” J. Appl. Phys.59(9), 3289 (1986). [CrossRef]
  40. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter44(11), 5855–5872 (1991). [CrossRef] [PubMed]
  41. Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf.278(1-3), 33–38 (2006). [CrossRef]
  42. R. Könenkamp, R. C. Word, G. F. Rempfer, T. Dixon, L. Almaraz, and T. Jones, “5.4 nm spatial resolution in biological photoemission electron microscopy,” Ultramicroscopy110(7), 899–902 (2010). [CrossRef] [PubMed]
  43. G. F. Rempfer, D. M. Deslodge, W. P. Skoczylas, and O. H. Griffith, “Simultaneous correction of spherical and chromatic aberrations with an electron mirror: an electron optical achromat,” Microsc. Microanal.3, 14–27 (1997).
  44. M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Photoemission from multiply excited surface plasmons in Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.71(5), 547–552 (2000). [CrossRef]
  45. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, 2009).
  46. W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003). [CrossRef]
  47. P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett.11(9), 3531–3537 (2011). [CrossRef] [PubMed]
  48. M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett.9(5), 2188–2192 (2009). [CrossRef] [PubMed]
  49. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” Quantum Electron.33, 2038–2059 (1997).
  50. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  51. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B63(12), 125417 (2001). [CrossRef]
  52. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [Invited],” Opt. Mater. Express1(6), 1090–1099 (2011). [CrossRef]
  53. Sopra Group, N & K database. Bois Colombes, France.
  54. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  55. W.-J. Lee, J.-E. Kim, H. Y. Park, and M.-H. Lee, “Silver superlens using antisymmetric surface plasmon modes,” Opt. Express18(6), 5459–5465 (2010). [CrossRef] [PubMed]
  56. R. Slavík, J. Homola, and H. Vaisocherová, “Advanced biosensing using simultaneous excitation of short and long range surface plasmons,” Meas. Sci. Technol.17(4), 932–938 (2006). [CrossRef]
  57. P. Berini and I. De Leon, “surface plasmon–polariton amplifiers and lasers,” Nat. Photonics4, 382–387 (2011).
  58. C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett.13(3), 1053–1058 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited