OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30532–30544

Nonlinear optics in daily life

Elsa Garmire  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 30532-30544 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1903 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An overview is presented of the impact of NLO on today’s daily life. While NLO researchers have promised many applications, only a few have changed our lives so far. This paper categorizes applications of NLO into three areas: improving lasers, interaction with materials, and information technology. NLO provides: coherent light of different wavelengths; multi-photon absorption for plasma-materials interaction; advanced spectroscopy and materials analysis; and applications to communications and sensors. Applications in information processing and storage seem less mature.

© 2013 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.0140) Lasers and laser optics : Lasers and laser optics
(180.0180) Microscopy : Microscopy
(190.0190) Nonlinear optics : Nonlinear optics
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Nonlinear Optics

Original Manuscript: September 12, 2013
Revised Manuscript: October 17, 2013
Manuscript Accepted: October 18, 2013
Published: December 5, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics
Nonlinear Optics (2013) Optics Express

Elsa Garmire, "Nonlinear optics in daily life," Opt. Express 21, 30532-30544 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Garmire, “Overview of nonlinear optics,” open source, found at http://www.intechopen.com/books/nonlinear-optics/overview-of-nonlinear-optics . [CrossRef]
  2. E. Garmire, “Resource letter NO-1: nonlinear optics,” Am. J. Phys.79(3), 245–255 (2011). [CrossRef]
  3. http://en.wikipedia.org/wiki/Laser_pointer .
  4. http://www.coherent.com/products/?921/Mira-Family .
  5. C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, “Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser,” Opt. Express20(13), 13677–13683 (2012). [CrossRef] [PubMed]
  6. http://www.continuumlasers.com/products/tunable_horizon_OPO.asp .
  7. http://www.newport.com/Inspire-Automated-Ultrafast-OPOs/847655/1033/info.aspx .
  8. http://www.linos.com/pages/mediabase/original/06-4030-opo-flyer-4-seiter_verb-druckdatei_2843.pdf .
  9. http://www.nktphotonics.com/files/files/Argos-e-Brochure.pdf .
  10. http://www.m2lasers.com/media/53093/03.13_firefly-thz.pdf .
  11. V. R. Supradeepa and J. W. Nicholson, “Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers,” Opt. Lett.38(14), 2538–2541 (2013). [CrossRef] [PubMed]
  12. Z. Cong, X. Zhang, Q. Wang, Z. Liu, X. Chen, S. Fan, X. Zhang, H. Zhang, X. Tao, and S. Li, “Theoretical and experimental study on the Nd:YAG/BaWO4/KTP yellow laser generating 8.3 W output power,” Opt. Express18(12), 12111–12118 (2010). [CrossRef] [PubMed]
  13. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005). [CrossRef] [PubMed]
  14. Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature498(7455), 470–474 (2013). [CrossRef] [PubMed]
  15. http://www.photonicsolutions.co.uk/product.asp?prodid=LASmicrochip .
  16. http://www.jdsu.com/ProductLiterature/qseries_ds_cl_ae.pdf .
  17. http://www.onefive.com/ds/Origami.pdf .
  18. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum.68(9), 3277–3295 (1997). [CrossRef]
  19. http://www.npphotonics.com/includes/main.php?pid=45 .
  20. D. McCann, “Advances in laser machining key to stent market growth,” MicroManufacturing 3(2), March/April (2010).
  21. http://anthropology.net/2008/08/21/maldi-tof-mass-spectrometry-of-otzioetzi-the-icemans-clothing/ .
  22. K. Hollemeyer, W. Altmeyer, E. Heinzle, and C. Pitra, “Species identification of Oetzi’s clothing with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry based on peptide pattern similarities of hair digests,” Rapid Commun. Mass Spectrom.22(18), 2751–2767 (2008). [CrossRef] [PubMed]
  23. B.-G. Wang, K. König, and K.-J. Halbhuber, “Two-photon microscopy of deep intravital tissues and its merits in clinical research,” J. Microsc.238(1), 1–20 (2010). [CrossRef] [PubMed]
  24. http://www.verisante.com/aura/medical_professional/
  25. K. X. Liu and E. Garmire, “Understanding the formation of the SRS Stokes spectrum in fused-silica fibers,” IEEE J. Quantum Electron.27(4), 1022–1030 (1991). [CrossRef]
  26. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited