OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30545–30552

Mid-IR optical amplification and detection using quantum cascade lasers

Dingkai Guo, Xing Chen, Liwei Cheng, Alexey Belyanin, and Fow-Sen Choa  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 30545-30552 (2013)
http://dx.doi.org/10.1364/OE.21.030545


View Full Text Article

Enhanced HTML    Acrobat PDF (1718 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Amplification and detection characteristics of mid-infrared quantum cascade lasers (QCLs) are studied. The QCL amplifier has an adjustable bandwidth and tunable gain peak to function as a tunable mid-IR filter. By biasing the QCL slightly below its threshold, we demonstrated more than 11dB optical gain and over 28dB electrical gain at specified wavelengths. In the electrical gain measurement process, the resonant amplifier also functioned as a detector. Mid-IR amplification and detection can be achieved using the same material for the laser source. This indicates that intersubband based gain materials can be ideal candidates for mid-IR photonic integrations.

© 2013 Optical Society of America

OCIS Codes
(140.3280) Lasers and laser optics : Laser amplifiers
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 9, 2013
Revised Manuscript: November 7, 2013
Manuscript Accepted: November 29, 2013
Published: December 5, 2013

Citation
Dingkai Guo, Xing Chen, Liwei Cheng, Alexey Belyanin, and Fow-Sen Choa, "Mid-IR optical amplification and detection using quantum cascade lasers," Opt. Express 21, 30545-30552 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-30545


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994). [CrossRef] [PubMed]
  2. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001). [CrossRef]
  3. J. Darmo, V. Tamosiunas, G. Fasching, J. Kröll, K. Unterrainer, M. Beck, M. Giovannini, J. Faist, C. Kremser, and P. Debbage, “Imaging with a Terahertz quantum cascade laser,” Opt. Express12(9), 1879–1884 (2004). [CrossRef] [PubMed]
  4. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008). [CrossRef]
  5. X. Chen, L. Cheng, D. Guo, Y. Kostov, and F.-S. Choa, “Quantum cascade laser based standoff photoacoustic chemical detection,” Opt. Express19(21), 20251–20257 (2011). [CrossRef] [PubMed]
  6. R. Martini and E. A. Whittaker, “Quantum cascade laser-based free space optical communications,” J. Opt. Fiber Commun. Rep.2(4), 279–292 (2005). [CrossRef]
  7. Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett.95(22), 221104 (2009). [CrossRef]
  8. T. L. Koch, F. S. Choa, F. Heismann, and U. Koren, “Tunable multiple-quantum-well distributed-Bragg-reflector lasers as tunable narrowband receivers,” Electron. Lett.25(14), 890–892 (1989). [CrossRef]
  9. H. Nakajima, “High-speed and high gain optical amplifying photodetection in a semiconductor laser amplifier,” Appl. Phys. Lett.54(11), 984–986 (1989). [CrossRef]
  10. S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Capasso, “Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K,” Opt. Express19(17), 16229–16235 (2011). [CrossRef] [PubMed]
  11. D. Hofstetter, M. Beck, and J. Faist, “Quantum-cascade-laser structures as photodetectors,” Appl. Phys. Lett.81(15), 2683–2685 (2002). [CrossRef]
  12. X. Chen, D. Shyu, F.-S. Choa, and S. Trivedi, “Quantum cascade laser as a mid-infrared photovoltaic and photoconductive detector,” Proc. SPIE8012, 80123N (2011). [CrossRef]
  13. B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett.101(19), 191109 (2012). [CrossRef]
  14. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron.18(6), 976–983 (1982). [CrossRef]
  15. F. S. Choa and T. L. Koch, “Static and dynamical characteristics of narrow-band tunable resonant amplifiers as active filters and receivers,” J. Lightwave Technol.9(1), 73–83 (1991). [CrossRef]
  16. J. von Staden, T. Gensty, W. Elsässer, G. Giuliani, and C. Mann, “Measurements of the α factor of a distributed-feedback quantum cascade laser by an optical feedback self-mixing technique,” Opt. Lett.31(17), 2574–2576 (2006). [CrossRef] [PubMed]
  17. C. Harder, J. Katz, S. Margalit, J. Shacham, and A. Yariv, “Noise equivalent circuit of a semiconductor laser diode,” IEEE J. Quantum Electron.18(3), 333–337 (1982). [CrossRef]
  18. L. Cheng, J. Fan, D. Janssen, D. Guo, X. Chen, F. J. Towner, and F.-S. Choa, “Analysis of InP regrowth on deep-etched mesas and structural characterization for buried-heterostructure quantum cascade lasers,” J. Electron. Mater.41(3), 506–513 (2012). [CrossRef]
  19. X. Chen, L. Cheng, D. Guo, F.-S. Choa, and T. Worchesky, “Low threshold short cavity quantum cascade lasers,” Proc. SPIE7953, 79531Z (2011). [CrossRef]
  20. M. H. Shih, L. Wang, F. S. Choa, T. Tanbun-Ek, P. Wisk, W. T. Tsang, and C. A. Burrus, “Integrated coherent transceivers for broadband access networks,” IEEE Photonics Technol. Lett.9(11), 1526–1528 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited