OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30642–30652

Phase noise analysis of two wavelength coherent imaging system

Benjamin R. Dapore, David J. Rabb, and Joseph W. Haus  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 30642-30652 (2013)
http://dx.doi.org/10.1364/OE.21.030642


View Full Text Article

Enhanced HTML    Acrobat PDF (1874 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two wavelength coherent imaging is a digital holographic technique that offers several advantages over conventional coherent imaging. One of the most significant advantages is the ability to extract 3D target information from the phase contrast image at a known difference frequency. However, phase noise detracts from the accuracy at which the target can be faithfully identified. We therefore describe a method for relating phase noise to the correlation of the image planes corresponding to each wavelength, among other parameters. The prediction of the phase noise spectrum of a scene will aid in determining our ability to reconstruct the target.

© 2013 Optical Society of America

OCIS Codes
(110.4280) Imaging systems : Noise in imaging systems
(110.6150) Imaging systems : Speckle imaging
(090.1995) Holography : Digital holography
(100.3175) Image processing : Interferometric imaging
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Imaging Systems

History
Original Manuscript: September 17, 2013
Revised Manuscript: October 30, 2013
Manuscript Accepted: October 31, 2013
Published: December 5, 2013

Citation
Benjamin R. Dapore, David J. Rabb, and Joseph W. Haus, "Phase noise analysis of two wavelength coherent imaging system," Opt. Express 21, 30642-30652 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-30642


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Schnars and W. Jueptner, Digital Holography, (Springer, Berlin, 2005).
  2. M.  Lee, O.  Yaglidere, A.  Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express 2(9), 2721–2730 (2011). [CrossRef] [PubMed]
  3. J. C.  Marron, R. L.  Kendrick, “Distributed aperture active Imaging,” Proc. SPIE 6550, 65500A(2007). [CrossRef]
  4. D. J.  Rabb, D. F.  Jameson, A. J.  Stokes, J. W.  Stafford, “Distributed aperture synthesis,” Opt. Express 18(10), 10334–10342 (2010). [CrossRef] [PubMed]
  5. J. C.  Marron, R. L.  Kendrick, N.  Seldomridge, T. D.  Grow, T. A.  Höft, “Atmospheric turbulence correction using digital holographic detection: experimental results,” Opt. Express 17(14), 11638–11651 (2009). [CrossRef] [PubMed]
  6. N. J.  Miller, J. W.  Haus, P.  McManamon, D.  Shemano, “Multi-aperture coherent imaging,” Proc. SPIE 8052, 805207 (2011). [CrossRef]
  7. G. Nehmetallah, P. Banerjee and N. Kukhtarev, “Single-beam holographic tomography creates images in three dimensions,” SPIE Newsroom (2011). doi: 10.1117/ 2.1201102.003474.
  8. M.  Yonemura, T.  Nishisaka, H.  Machida, “Endoscopic hologram interferometry using fiber optics,” Appl. Opt. 20(9), 1664–1667 (1981). [CrossRef] [PubMed]
  9. P. P.  Banerjee, G.  Nehmetallah, N.  Kukhtarev, S. C.  Praharaj, “Dynamic holographic interferometry of diffuse objects and its application to determination of airplane attitudes,” Appl. Opt. 47, 3877–3885 (2008). [CrossRef] [PubMed]
  10. J. W. Goodman, Speckle Phenomena in Optics (Theory and Applications) (Roberts & Company, Englewood, Colorado, 2007).
  11. J. C.  Marron, “Wavelength decorrelation of laser speckle from three-dimensional diffuse objects,” Opt. Commun. 88(4-6), 305–308 (1992). [CrossRef]
  12. J. R.  Fienup, A. M.  Kowalczyk, “Phase retrieval for a complex-valued object by using a low-resolution image,” J. Opt. Soc. Am. A 7(3), 450–458 (1990). [CrossRef]
  13. M.  Guizar-Sicairos, S. T.  Thurman, J. R.  Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008). [CrossRef] [PubMed]
  14. T.  Colomb, P.  Dahlgren, D.  Beghuin, E.  Cuche, P.  Marquet, C.  Depeursinge, “Polarization Imaging by Use of Digital Holography,” Appl. Opt. 41(1), 27–37 (2002). [PubMed]
  15. J.  Kühn, T.  Colomb, F.  Montfort, F.  Charrière, Y.  Emery, E.  Cuche, P.  Marquet, C.  Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007). [CrossRef] [PubMed]
  16. J. W.  Haus, B.  Dapore, N.  Miller, P.  Banerjee, G.  Nehmetallah, P.  Powers, P.  McManamon, “Instantaneously captured images using multi-wavelength digital holography,” Proc. SPIE 8493, 84930W (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited