OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30653–30663

Interferometric velocity measurements through a fluctuating gas-liquid interface employing adaptive optics

Lars Büttner, Christoph Leithold, and Jürgen Czarske  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 30653-30663 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2355 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical transmission through fluctuating interfaces of mediums with different refractive indexes is limited by the occurring distortions. Temporal fluctuations of such distortions deteriorate optical measurements. In order to overcome this shortcoming we propose the use of adaptive optics. For the first time, an interferometric velocity measurement technique with embedded adaptive optics is presented for flow velocity measurements through a fluctuating air-water interface. A low order distortion correction technique using a fast deformable mirror and a Hartmann-Shack camera with high frame rate is employed. The obtained high control bandwidth enables precise measurements also at fast fluctuating media interfaces. This methodology paves the way for several kinds of optical flow measurements in various complex environments.

© 2013 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(230.6120) Optical devices : Spatial light modulators
(350.4600) Other areas of optics : Optical engineering
(120.1088) Instrumentation, measurement, and metrology : Adaptive interferometry
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: October 1, 2013
Revised Manuscript: November 25, 2013
Manuscript Accepted: November 27, 2013
Published: December 5, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics
January 24, 2014 Spotlight on Optics

Lars Büttner, Christoph Leithold, and Jürgen Czarske, "Interferometric velocity measurements through a fluctuating gas-liquid interface employing adaptive optics," Opt. Express 21, 30653-30663 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. W.  Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65(386), 229–236 (1953). [CrossRef]
  2. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University, 1998).
  3. R. Davies and M. Kasper, “Adaptive optics for astronomy,” Annu. Rev. Astrophys. 50, arXiv:1201.5741 (2012).
  4. J.  Liang, D. R.  Williams, D. T.  Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997). [CrossRef] [PubMed]
  5. J.  Rha, R. S.  Jonnal, K. E.  Thorn, J.  Qu, Y.  Zhang, D. T.  Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14(10), 4552–4569 (2006). [CrossRef] [PubMed]
  6. A.  Roorda, F.  Romero-Borja, W.  Donnelly Iii, H.  Queener, T. J.  Hebert, M. C. W.  Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002). [CrossRef] [PubMed]
  7. R. J.  Zawadzki, S. M.  Jones, S. S.  Olivier, M.  Zhao, B. A.  Bower, J. A.  Izatt, S.  Choi, S.  Laut, J. S.  Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005). [CrossRef] [PubMed]
  8. Y.  Zhang, B.  Cense, J.  Rha, R. S.  Jonnal, W.  Gao, R. J.  Zawadzki, J. S.  Werner, S.  Jones, S.  Olivier, D. T.  Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006). [CrossRef] [PubMed]
  9. X.  Xu, H.  Liu, L. V.  Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011). [CrossRef] [PubMed]
  10. X.  Tao, O.  Azucena, M.  Fu, Y.  Zuo, D. C.  Chen, J.  Kubby, “Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars,” Opt. Lett. 36(17), 3389–3391 (2011). [CrossRef] [PubMed]
  11. K.  Si, R.  Fiolka, M.  Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012). [CrossRef] [PubMed]
  12. Y. M.  Wang, B.  Judkewitz, C. A.  Dimarzio, C.  Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat Commun 3, 928 (2012). [CrossRef] [PubMed]
  13. A. P.  Mosk, A.  Lagendijk, G.  Lerosey, M.  Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012). [CrossRef]
  14. B.  Judkewitz, Y. M.  Wang, R.  Horstmeyer, A.  Mathy, C.  Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013). [CrossRef] [PubMed]
  15. T. R.  Hillman, T.  Yamauchi, W.  Choi, R. R.  Dasari, M. S.  Feld, Y.  Park, Z.  Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci Rep 3, 1909 (2013). [CrossRef] [PubMed]
  16. R.  Fiolka, K.  Si, M.  Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express 20(15), 16532–16543 (2012). [CrossRef]
  17. J.  Jang, J.  Lim, H.  Yu, H.  Choi, J.  Ha, J. H.  Park, W. Y.  Oh, W.  Jang, S. D.  Lee, Y. K.  Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013). [CrossRef] [PubMed]
  18. B.  Böhm, C.  Heeger, R. L.  Gordon, A.  Dreizler, “New Perspectives on Turbulent Combustion: Multi-Parameter High-Speed Planar Laser Diagnostics,” Flow Turbul. Combus. 86(3–4), 313–341 (2010).
  19. G. E.  Elsinga, B. W.  van Oudheusden, F.  Scarano, “Evaluation of aero-optical distortion effects in PIV,” Exp. Fluids 39(2), 246–256 (2005). [CrossRef]
  20. J.  König, K.  Tschulik, L.  Büttner, M.  Uhlemann, J.  Czarske, “Analysis of the Electrolyte Convection inside the Concentration Boundary Layer during Structured Electrodeposition of Copper in High Magnetic Gradient Fields,” Anal. Chem. 85(6), 3087–3094 (2013). [CrossRef] [PubMed]
  21. M.  Neumann, C.  Friedrich, J.  Czarske, J.  Kriegseis, S.  Grundmann, “Determination of the phase-resolved body force produced by a dielectric barrier discharge plasma actuator,” J. Phys. D Appl. Phys. 46(4), 042001 (2013). [CrossRef]
  22. G.  Gomit, L.  Chatellier, D.  Calluaud, L.  David, “Free surface measurement by stereo-refraction,” Exp. Fluids 54(6), 1540 (2013). [CrossRef]
  23. E.  Schleicher, M. J.  da Silva, S.  Thiele, A.  Li, E.  Wollrab, U.  Hampel, “Design of an optical tomograph for the investigation of single- and two-phase pipe flows,” Meas. Sci. Technol. 19(9), 094006 (2008). [CrossRef]
  24. S. B. G. O’Brien and L. W. Schwartz, “Theory and modeling of thin film flows,” in Encyclopedia of Surface and Colloid Science (Taylor and Francis, 2002), pp. 5283–5297.
  25. S. Kalliadasis, C. Ruyer-Quil, B. Scheid, and M. G. Velarde, Falling Liquid Films (Springer, 2012).
  26. P. C.  Miles, “Geometry of the fringe field formed in the intersection of two Gaussian beams,” Appl. Opt. 35(30), 5887–5895 (1996). [CrossRef] [PubMed]
  27. J.  Czarske, L.  Büttner, T.  Razik, H.  Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002). [CrossRef]
  28. A. Sommerfeld, Mechanics of Deformable Bodies (Lectures on Theoretical Physics) (Academic, 1950).
  29. R. K. Tyson, Principles of Adaptive Optics, 3rd ed. (CRC, 2010).
  30. G.  Vdovin, P. M.  Sarro, “Flexible mirror micromachined in silicon,” Appl. Opt. 34(16), 2968–2972 (1995). [CrossRef] [PubMed]
  31. K.-H.  Brenner, W.  Singer, “Light propagation through microlenses: a new simulation method,” Appl. Opt. 32(26), 4984–4988 (1993). [CrossRef] [PubMed]
  32. K.  Matsushima, H.  Schimmel, F.  Wyrowski, “Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves,” J. Opt. Soc. Am. A 20(9), 1755–1762 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited