OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30664–30673

Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI

Sailing He, Xizhou Zhang, and Yingran He  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 30664-30673 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2377 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Electronics circuits keep shrinking in dimensions, as requested by Moore’s law. In contrast, photonic waveguides and circuit elements still have lateral dimensions on the order of the wavelength. A key to make photonics have a microelectronics-like development is a drastic reduction of size. To achieve this, we need a low-loss nanoscale waveguide with a drastically reduced mode area and an ultra-high effective refractive index. For this purpose, we propose here several low-loss waveguide structures based on graphene nano-ribbons. An extremely small mode area (~10−7λ02, one order smaller than the smallest mode area of any waveguide that has ever been reported in the literature; here λ0 is the operating wavelength in vacuum) and an extremely large effective refractive index (several hundreds) are achieved. As a device example, a nano-ring cavity of ultra-small size (with a diameter of ~10−2λ0) is designed. Our study paves the way for future VLSI (very-large-scale integration) optoelectronics.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: October 2, 2013
Revised Manuscript: November 26, 2013
Manuscript Accepted: November 29, 2013
Published: December 5, 2013

Sailing He, Xizhou Zhang, and Yingran He, "Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI," Opt. Express 21, 30664-30673 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L.  Ju, B.  Geng, J.  Horng, C.  Girit, M.  Martin, Z.  Hao, H. A.  Bechtel, X.  Liang, A.  Zettl, Y. R.  Shen, F.  Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011). [CrossRef] [PubMed]
  2. A. K.  Geim, K. S.  Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007). [CrossRef] [PubMed]
  3. K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004). [CrossRef] [PubMed]
  4. A.  Vakil, N.  Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011). [CrossRef] [PubMed]
  5. S. A.  Mikhailov, K.  Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007). [CrossRef] [PubMed]
  6. M.  Jablan, H.  Buljan, M.  Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009). [CrossRef]
  7. F. H. L.  Koppens, D. E.  Chang, F. J.  García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011). [CrossRef] [PubMed]
  8. G. W.  Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008). [CrossRef]
  9. A. Y.  Nikitin, F.  Guinea, F. J.  García-Vidal, L.  Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011). [CrossRef]
  10. P. R.  West, S.  Ishii, G. V.  Naik, N. K.  Emani, V. M.  Shalaev, A.  Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010). [CrossRef]
  11. S.  Thongrattanasiri, F. H. L.  Koppens, F. J.  García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012). [CrossRef] [PubMed]
  12. L.  Wu, H. S.  Chu, W. S.  Koh, E. P.  Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18(14), 14395–14400 (2010). [CrossRef] [PubMed]
  13. E. H.  Hwang, S.  Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75(20), 205418 (2007). [CrossRef]
  14. B.  Wunsch, T.  Stauber, F.  Sols, F.  Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys. 8(12), 318 (2006). [CrossRef]
  15. G.  Eda, G.  Fanchini, M.  Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol. 3(5), 270–274 (2008). [CrossRef] [PubMed]
  16. E.  Verhagen, M.  Spasenović, A.  Polman, L. K.  Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102(20), 203904 (2009). [CrossRef] [PubMed]
  17. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  18. P.  Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14(26), 13030–13042 (2006). [CrossRef] [PubMed]
  19. Q.  Huang, F.  Bao, S.  He, “Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement,” Opt. Express 21(2), 1430–1439 (2013). [CrossRef] [PubMed]
  20. An early version of the present paper was put online in May, 2013, at ArXiv. S. He, X. Zhang, and Y. He, “Graphene nano-ribbon waveguides,” ArXiv preprint 2013, DOI: arXiv: 1305.6500, http://arxiv.org/abs/1305.6500 .
  21. Y.  Francescato, V.  Giannini, S. A.  Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(6), 063020 (2013). [CrossRef]
  22. R.  Buckley, P.  Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15(19), 12174–12182 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited