OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30683–30692

Whispering gallery modes at the rim of an axisymmetric optical resonator: Analytical versus numerical description and comparison with experiment

I. Breunig, B. Sturman, F. Sedlmeir, H. G. L. Schwefel, and K. Buse  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 30683-30692 (2013)
http://dx.doi.org/10.1364/OE.21.030683


View Full Text Article

Enhanced HTML    Acrobat PDF (2060 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical whispering gallery modes (WGMs) of mm-sized axisymmetric resonators are well localized at the equator. Employing this distinctive feature, we obtain simple analytical relations for the frequencies and eigenfunctions of WGMs which include the major radius of the resonator and the curvature radius of the rim. Being compared with results of finite-element simulations, these relations show a high accuracy and practicability. High-precision free-spectral-range measurements with a millimeter-sized disc resonator made of MgF2 allow us to identify the WGMs and confirm the applicability of our analytical description.

© 2013 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(230.5750) Optical devices : Resonators

ToC Category:
Optical Devices

History
Original Manuscript: October 4, 2013
Revised Manuscript: November 22, 2013
Manuscript Accepted: November 23, 2013
Published: December 5, 2013

Citation
I. Breunig, B. Sturman, F. Sedlmeir, H. G. L. Schwefel, and K. Buse, "Whispering gallery modes at the rim of an axisymmetric optical resonator: Analytical versus numerical description and comparison with experiment," Opt. Express 21, 30683-30692 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-30683


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003). [CrossRef] [PubMed]
  2. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett.29, 1224–1226 (2004). [CrossRef] [PubMed]
  3. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express15, 6768–6773 (2007). [CrossRef] [PubMed]
  4. L. Maleki, V. S. Ilchenko, A. A. Savchenkov, and A. B. Matsko, “Crystalline whispering gallery mode resonators in optics and photonics,” in Practical Applications of Microresonators in Optics and Photonics, A. B. Matsko, ed. (CRC Press, 2009).
  5. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes Part II: Applications,” IEEE J. Quantum Electron.12, 15–32 (2006).
  6. B. Sprenger, H. G. L. Schwefel, and L. J. Wang, “Whispering-gallery-mode-resonator-stabilized narrow-linewidth fiber loop laser,” Opt. Lett.34, 3370–3372 (2009). [CrossRef] [PubMed]
  7. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett.92, 43903 (2004). [CrossRef]
  8. D. V. Strekalov, A. S. Kowligy, Y. P. Huang, and P. Kumar, “Optical sum-frequency generation in whispering gallery mode resonators,” arXiv:0695587 (2013).
  9. J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett.105, 263904 (2010). [CrossRef]
  10. T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett.106, 143903 (2011). [CrossRef] [PubMed]
  11. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1218 (2007). [CrossRef]
  12. A. N. Oraevsky, “Whispering-gallery waves,” Quantum Electron.32, 377–400 (2002). [CrossRef]
  13. H. G. L. Schwefel, A. D. Stone, and H. E. Tureci, “Polarization properties and dispersion relations for spiral resonances of a dielectric rod,” J. Opt. Soc. Am. B22, 2295–2307 (2005). [CrossRef]
  14. I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun.265, 33–38 (2006). [CrossRef]
  15. B. Sprenger, H. G. L. Schwefel, Z. H. Lu, S. Svitlov, and L. J. Wang, “CaF2whispering-gallery-mode-resonator stabilized-narrow-linewidth laser,” Opt. Lett.35, 2870–2871 (2010). [CrossRef] [PubMed]
  16. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421, 925–928 (2003). [CrossRef] [PubMed]
  17. D. V. Strekalov, A. A. Savchenkov, A. B. Matsko, and N. Yu, “Efficient upconversion of subterahertz radiation in a high-Q whispering gallery resonator,” Opt. Lett.34, 713–715 (2009). [CrossRef] [PubMed]
  18. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6, 369–373 (2012). [CrossRef]
  19. T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, and K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett.100, 103905 (2008). [CrossRef] [PubMed]
  20. J. B. Keller and S. I. Rubinow, “Asymptotic solution of eigenvalue problems,” Ann. Phys.9, 24–75 (1960). [CrossRef]
  21. V. M. Babic and V. S. Buldyrev, Short-Wavelength Diffraction Theory: Asymptotic Methods (Springer, 1991).
  22. M. L. Gorodetsky and A. E. Fomin, “Geometrical theory of whispering gallery modes,” IEEE J. Sel. Top. Quantum Electron.12, 33–39 (2006). [CrossRef]
  23. M. L. Gorodetsky and Y. A. Demchenko, “Accurate analytical estimates of eigenfrequencies and dispersion in whispering-gallery spheroidal resonators,” Proc. SPIE8236, 823623 (2012).
  24. Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A72, 31801 (2005). [CrossRef]
  25. B. Sturman and I. Breunig, “Generic description of second-order nonlinear phenomena in whispering-gallery resonators,” J. Opt. Soc. Am. B28, 2465–2471 (2011). [CrossRef]
  26. G. B. Arfken and H. G. Weber, Mathematical Methods for Physicists (Academic, 2001).
  27. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1972), p. 367.
  28. M. Oxborrow, “Traceable 2D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech.55, 1209–1218 (2007). [CrossRef]
  29. J. Li, H. Lee, K. Y. Yang, and K. J. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” Opt. Express20, 26337–26344 (2012). [CrossRef] [PubMed]
  30. M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt.23, 1980–1985 (1984). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited