OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30707–30715

Dual-comb spectroscopy using frequency-doubled combs around 775 nm

Simon Potvin and Jérôme Genest  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 30707-30715 (2013)
http://dx.doi.org/10.1364/OE.21.030707


View Full Text Article

Enhanced HTML    Acrobat PDF (2271 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two frequency-doubled combs are generated by nonlinear frequency conversion to realize spectroscopic measurements around 775 nm. Frequency-doubled interferograms are corrected in real-time by monitoring the relative instabilities between the combs at their fundamental frequency. Rubidium absorption lines are used to demonstrate the technique’s accuracy and serve as absolute references to calibrate the frequency grid of computed spectra. The method allows frequency-doubled interferograms to be averaged without distortion during long periods of time. The calibrated frequency grid is validated by the measurement of the oxygen A-band. Moreover, the measurement analysis of the acetylene ν1 + 3ν3 overtone band has revealed some discrepancies with previous publications.

© 2013 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(140.4050) Lasers and laser optics : Mode-locked lasers
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Spectroscopy

History
Original Manuscript: October 14, 2013
Revised Manuscript: November 29, 2013
Manuscript Accepted: December 2, 2013
Published: December 5, 2013

Citation
Simon Potvin and Jérôme Genest, "Dual-comb spectroscopy using frequency-doubled combs around 775 nm," Opt. Express 21, 30707-30715 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-30707


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett.27(9), 766–768 (2002). [CrossRef] [PubMed]
  2. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4(1), 55–57 (2010). [CrossRef]
  3. J.-D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express18(22), 23358–23370 (2010). [CrossRef] [PubMed]
  4. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100(1), 013902 (2008). [CrossRef] [PubMed]
  5. J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express20(20), 21932–21939 (2012). [CrossRef] [PubMed]
  6. A. Poisson, T. Ideguchi, G. Guelachvili, N. Picqué, and T. Hänsch, “Adaptive dual-comb spectroscopy with free-running lasers and resolved comb lines,” in CLEO: Science and Innovations, OSA Technical Digest paper CW1J.1 (2012).
  7. A. Schliesser, N. Picqué, and T. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012). [CrossRef]
  8. T. Ideguchi, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Adaptive dual-comb spectroscopy in the green region,” Opt. Lett.37(23), 4847–4849 (2012). [CrossRef] [PubMed]
  9. S. Potvin, S. Boudreau, J.-D. Deschênes, and J. Genest, “Fully referenced single-comb interferometry using optical sampling by laser-cavity tuning,” Appl. Opt.52(2), 248–255 (2013). [CrossRef] [PubMed]
  10. S. Potvin, J. Roy, and J. Genest, “Dual-Comb Spectroscopy of Oxygen in ambient air around 765 nm Using Frequency-Doubled Combs,” in Imaging and Applied Optics, J. Christou and D. Miller, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper FTu2D.2.
  11. J. Roy, “Correction et moyennage temps-réel pour mesures interférométriques par peignes de fréquence”, Master’s Thesis, (Université Laval, 2013). http://www.theses.ulaval.ca/2013/30065/
  12. S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectroscopy, (Academic Press, 2001), Chap. 9.
  13. D. A. Steck, “Rubidium 85 D Line Data,” available online at http://steck.us/alkalidata (revision 2.1.6, 20 September 2013).
  14. D. A. Steck, “Rubidium 87 D Line Data,” available online at http://steck.us/alkalidata (revision 2.1.4, 20 December 2010).
  15. N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transf.112(1), 59–67 (2011). [CrossRef]
  16. P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. At. Mol. Opt. Phys.41(15), 155004 (2008). [CrossRef]
  17. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.110(9-10), 533–572 (2009). [CrossRef]
  18. H. Valipour and D. Zimmermann, “Investigation of J dependence of line shift, line broadening, and line narrowing coefficients in the ν1+ 3ν3 absorption band of acetylene,” J. Chem. Phys.114(8), 3535 (2001). [CrossRef]
  19. F. Herregodts, D. Hurtmans, J. Vander Auwera, and M. Herman, “Laser spectroscopy of the ν1 + 3ν3 absorption band in 12C2H2. I. Pressure broadening and absolute line intensity measurements,” J. Chem. Phys.111(17), 7954 (1999). [CrossRef]
  20. F. Herregodts, D. Hurtmans, J. Vander Auwera, and M. Herman, “Laser spectroscopy of the ν1 + 3ν3 absorption band in 12C2H2. II.Self-collisional lineshift measurements,” J. Chem. Phys.111(17), 7961 (1999). [CrossRef]
  21. F. Herregodts, E. Kerrinckx, T. R. Huet, and J. Vander Auwera, “Absolute line intensities in the ν1 + 3ν3 band of 12C2H2 by laser photoacoustic spectroscopy and Fourier transform spectroscopy,” Mol. Phys.101(23-24), 3427–3438 (2003). [CrossRef]
  22. J. Sakai and M. Katayama, “Diode laser spectroscopy of acetylene: 3ν1 + ν3 region at 0.77 μm,” J. Mol. Spectrosc.154(2), 277–287 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited