OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30778–30795

Bound-to-continuum absorption with tunneling in type-II nanostructures: a multiband source-radiation approach

Chi-Ti Hsieh and Shu-Wei Chang  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 30778-30795 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (996 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We convert calculations of the bound-to-continuum absorption in type-II semiconductor quantum wells into an equivalent source-radiation problem under the effective-mass approximation with band mixing. Perfectly matched layers corresponding to the eight-band Luttinger-Kohn Hamiltonian are introduced to incorporate the effect of quasi-bound states in open regions. In this way, the interplay between quantum tunneling and optical transitions is fully taken into account. From resulted lineshapes of the Fano resonance, we can evaluate tunneling rates of these metastable states and related absorption strengths relative to those of the continuum. The approach here is useful in estimations of carrier extraction rates from type-II nanostructures for photovoltaic applications.

© 2013 Optical Society of America

OCIS Codes
(040.4200) Detectors : Multiple quantum well
(040.5350) Detectors : Photovoltaic
(160.4760) Materials : Optical properties

ToC Category:

Original Manuscript: August 22, 2013
Revised Manuscript: November 3, 2013
Manuscript Accepted: November 24, 2013
Published: December 6, 2013

Chi-Ti Hsieh and Shu-Wei Chang, "Bound-to-continuum absorption with tunneling in type-II nanostructures: a multiband source-radiation approach," Opt. Express 21, 30778-30795 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Meyer, C. L. Felix, W. W. Bewley, I. Vurgaftman, E. H. Aifer, L. J. Olafsen, J. R. Lindle, C. A. Hoffman, M.-J. Yang, B. R. Bennett, B. V. Shanabrook, H. Lee, C.-H. Lin, S. S. Pei, and R. H. Miles, “Auger coefficients in type-II InAs/Ga1−x Inx Sb quantum wells,” Appl. Phys. Lett.73, 2857–2859 (1998). [CrossRef]
  2. S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, “Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures,” J. Am. Chem. Soc.125, 11466–11467 (2003). [CrossRef] [PubMed]
  3. A. Ahland, D. Schulz, and E. Voges, “Accurate mesh truncation for Schrodinger equations by a perfectly matched layer absorber: Application to the calculation of optical spectra,” Phys. Rev. B60, R5109–R5112 (1999). [CrossRef]
  4. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114, 185–200 (1994). [CrossRef]
  5. W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microw. Opt. Technol. Lett.7, 599–604 (1994). [CrossRef]
  6. F. L. Teixeira and W. C. Chew, “General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media,” IEEE Microw. Guided Wave Lett.8, 223–225 (1998). [CrossRef]
  7. S. Odermatt, M. Luisier, and B. Witzigmann, “Bandstructure calculation using the k· p method for arbitrary potentials with open boundary conditions,” J. Appl. Phys.97, 046104 (2005). [CrossRef]
  8. M. Karner, A. Gehring, and H. Kosina, “Efficient calculation of lifetime based direct tunneling through stacked dielectrics,” J. Comput. Electron.5, 161–165 (2006). [CrossRef]
  9. A. Ahland, M. Wiedenhaus, D. Schulz, and E. Voges, “Calculation of exciton absorption in arbitrary layered semiconductor nanostructures with exact treatment of the coulomb singularity,” IEEE J. Quantum Electron.36, 842–848 (2000). [CrossRef]
  10. T.-Y. Zhang and W. Zhao, “Magnetoexcitonic optical absorption in semiconductors under strong magnetic fields and intense terahertz radiation in the Voigt configuration,” EPL82, 67001 (2008). [CrossRef]
  11. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124, 1866–1878 (1961). [CrossRef]
  12. S.-L. Chuang, S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, “Exciton Green’s-function approach to optical absorption in a quantum well with an applied electric field,” Phys. Rev. B43, 1500–1509 (1991). [CrossRef]
  13. S. Glutsch, D. S. Chemla, and F. Bechstedt, “Numerical calculation of the optical absorption in semiconductor quantum structures,” Phys. Rev. B54, 11592–11601 (1996). [CrossRef]
  14. J. M. Luttinger and W. Kohn, “Motion of electrons and holes in perturbed periodic fields,” Phys. Rev.97, 869–883 (1955). [CrossRef]
  15. C. Y.-P. Chao and S. L. Chuang, “Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells,” Phys. Rev. B46, 4110–4122 (1992). [CrossRef]
  16. G. Liu and S.-L. Chuang, “Modeling of Sb-based type-II quantum cascade lasers,” Phys. Rev. B65, 165220 (2002). [CrossRef]
  17. P.-F. Qiao, S. Mou, and S. L. Chuang, “Electronic band structures and optical properties of type-II superlattice photodetectors with interfacial effect,” Opt. Express20, 2319–2334 (2012). [CrossRef] [PubMed]
  18. S. L. Chuang, Physics of Photonic Devices, 2 (John Wiley & Sons, New Jersey, 2009).
  19. G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (John Wiley & Sons, New York, 1974).
  20. G. D. Mahan, Many-particle Physics, 3 (Kluwer Academic/Plenum Publishers, New York, 2000).
  21. S. L. Chuang, Physics of Optoelectronic Devices (John Wiley & Sons, New York, 1995).
  22. C.-S. Chang and S. L. Chuang, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Topics Quantum Electron.1, 218–229 (1995). [CrossRef]
  23. S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite semiconductors,” Semicond. Sci. Technol.12, 252–263 (1997). [CrossRef]
  24. D. Ahn and S.-L. Chuang, “Optical gain in a strained-layer quantum-well laser,” IEEE J. Quantum Electron.24, 2400–2406 (1988). [CrossRef]
  25. F. Szmulowicz, “Derivation of a general expression for the momentum matrix elements within the envelope-function approximation,” Phys. Rev. B51, 1613–1623 (1995). [CrossRef]
  26. Y.-C. Chang and R. B. James, “Saturation of intersubband transitions in p-type semiconductor quantum wells,” Phys. Rev. B39, 12672–12681 (1989). [CrossRef]
  27. P. Lawaetz, “Valence-band parameters in cubic semiconductors,” Phys. Rev. B4, 3460–3467 (1971). [CrossRef]
  28. X. Cartoixa, D. Z.-Y. Ting, and T. C. McGill, “Numerical spurious solutions in the effective mass approximation,” J. Appl. Phys.93, 3974–3981 (2003). [CrossRef]
  29. G. B. Liu, S.-L. Chuang, and S.-H. Park, “Optical gain of strained GaAsSb/GaAs quantum-well lasers: A self-consistent approach,” J. Appl. Phys.88, 5554–5561 (2000). [CrossRef]
  30. Y. Tsou, A. Ichii, and E. M. Garmire, “Improving InAs double heterostructure lasers with better confinement,” IEEE J. Quantum Electron.28, 1261–1268 (1992). [CrossRef]
  31. P. K. W. Vinsome and D. Richardson, “The dielectric function in zincblende semiconductors,” J. Phys. C: Solid St. Phys.4, 2650–2657 (1971). [CrossRef]
  32. C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B39, 1871–1883 (1989). [CrossRef]
  33. R. E. Nahory, M. A. Pollack, J. C. DeWinter, and K. M. Williams, “Growth and properties of liguid-phase epitaxial GaAs1−x Sbx,” J. Appl. Phys.48, 1607–1614 (1977). [CrossRef]
  34. D. Ahn, S. L. Chuang, and Y.-C. Chang, “Valence-band mixing effects on the gain and the refractive index change of quantum-well lasers,” J. Appl. Phys.64, 4056–4064 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited