OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30859–30873

Four-wave mixing stability in hybrid photonic crystal fibers with two zero-dispersion wavelengths

Benoit Sévigny, Olivier Vanvincq, Constance Valentin, Na Chen, Yves Quiquempois, and Géraud Bouwmans  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 30859-30873 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2604 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The four-wave mixing process in optical fibers is generally sensitive to dispersion uniformity along the fiber length. However, some specific phase matching conditions show increased robustness to longitudinal fluctuations in fiber dimensions, which affect the dispersion, even for signal and idler wavelengths far from the pump. In this paper, we present the method by which this point is found, how the fiber design characteristics impact on the stable point and demonstrate the stability through propagation simulations using the non-linear Schrödinger equation.

© 2013 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 8, 2013
Revised Manuscript: November 27, 2013
Manuscript Accepted: November 28, 2013
Published: December 6, 2013

Benoit Sévigny, Olivier Vanvincq, Constance Valentin, Na Chen, Yves Quiquempois, and Géraud Bouwmans, "Four-wave mixing stability in hybrid photonic crystal fibers with two zero-dispersion wavelengths," Opt. Express 21, 30859-30873 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron.23, 1205–1210 (1987). [CrossRef]
  2. G. P. Agrawal, Lightwave Technology: Telecommunication Systems (Wiley. com,2005). [CrossRef]
  3. P. V. Mamyshev and N. A. Mamysheva, “Pulse-overlapped dispersion-managed data transmission and intrachannel four-wave mixing,” Opt. Lett.24, 1454–1456 (1999). [CrossRef]
  4. J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber.” Opt. Lett.26, 1048–1050 (2001). [CrossRef]
  5. R. W. Boyd, Nonlinear Optics, vol. 5 of Electronics & Electrical (Academic Press, 2003).
  6. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2006), 4th ed.
  7. M. Levenson, R. Shelby, A. Aspect, M. Reid, and D. Walls, “Generation and detection of squeezed states of light by nondegenerate four-wave mixing in an optical fiber,” Phys. Rev. A32, 1550–1562 (1985). [CrossRef] [PubMed]
  8. J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Appl. Phys. Lett.72, 033801 (2005).
  9. C. Bennett, F. Bessette, and G. Brassard, “Experimental quantum cryptography,” Journal of Cryptology5, 3–28 (1992). [CrossRef]
  10. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett.84, 4729–4732 (2000). [CrossRef] [PubMed]
  11. J. A. Slater, J.-S. Corbeil, S. Virally, F. Bussières, A. Kudlinski, G. Bouwmans, S. Lacroix, N. Godbout, and W. Tittel, “Microstructured fiber source of photon pairs at widely separated wavelengths.” Opt. Lett.35, 499–501 (2010). [CrossRef] [PubMed]
  12. A. Furusawa, “Unconditional quantum teleportation,” Science282, 706–709 (1998). [CrossRef] [PubMed]
  13. A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett.87, 123602 (2001). [CrossRef] [PubMed]
  14. J. Hansryd, P. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron.8, 506–520 (2002). [CrossRef]
  15. R. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron.18, 1062–1072 (1982). [CrossRef]
  16. A. Kudlinski, V. Pureur, G. Bouwmans, and A. Mussot, “Experimental investigation of combined four-wave mixing and Raman effect in the normal dispersion regime of a photonic crystal fiber,” Opt. Lett.33, 2488–2490 (2008). [PubMed]
  17. S. Watanabe, T. Naito, and T. Chikama, “Compensation of chromatic dispersion in a single-mode fiber by optical phase conjugation,” IEEE Photon. Technol. Lett.5, 92–95 (1993). [CrossRef]
  18. S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol.14, 243–248 (1996). [CrossRef]
  19. G. J. Dunning and R. C. Lind, “Demonstration of image transmission through fibers by optical phase conjugation,” Opt. Lett.7, 558–560 (1982). [CrossRef] [PubMed]
  20. T. Andersen, K. Hilligsøe, C. Nielsen, J. Thøgersen, K. Hansen, S. Keiding, and J. Larsen, “Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths: erratum.” Opt. Express13, 3581–3582 (2005). [CrossRef] [PubMed]
  21. T. Torounidis, M. Karlsson, and P. A. Andrekson, “Fiber optical parametric amplifier pulse source: Theory and experiments,” J. Lightwave Technol.23, 4067 (2005). [CrossRef]
  22. F. Abdullaev and S. Darmanyan, “Modulational instability of electromagnetic waves in media with varying nonlinearity,” J. Opt. Soc. Am. B14, 27–33 (1997). [CrossRef]
  23. M. Karlsson, “Four-wave mixing in fibers with randomly varying zero-dispersion wavelength,” J. Opt. Soc. Am. B15, 2269–2275 (1998). [CrossRef]
  24. F. Abdullaev, B. Umarov, M. Wahiddin, and D. Navotny, “Dispersion-managed solitons in a periodically and randomly inhomogeneous birefringent optical fiber,” J. Opt. Soc. Am. B17, 1117–1124 (2000). [CrossRef]
  25. B. P.-P. Kuo and S. Radic, “Highly nonlinear fiber with dispersive characteristic invariant to fabrication fluctuations.” Opt. Express20, 7716–7725 (2012). [CrossRef] [PubMed]
  26. B. P.-P. Kuo, M. Hirano, and S. Radic, “Continuous-wave, short-wavelength infrared mixer using dispersion-stabilized highly-nonlinear fiber.” Opt. Express20, 18422–18431 (2012). [CrossRef] [PubMed]
  27. J. Lægsgaard, “Phase-matching conditions for single-pump parametric amplification in photonic crystal fibers,” J. Opt. A: Pure Appl. Opt.9, 1105–1112 (2007). [CrossRef]
  28. Y. Chen, W. J. Wadsworth, and T. A. Birks, “Ultraviolet four-wave mixing in the LP02fiber mode,” Opt. Lett.38, 3747–3750 (2013). [CrossRef] [PubMed]
  29. B. Øksendal, Stochastic Differential Equations, 6th ed. Universitext (Springer, Berlin, 2003). [CrossRef]
  30. E. Bibbona, G. Panfilo, and P. Tavella, “The Ornstein-Uhlenbeck process as a model of a low pass filtered white noise,” Metrologia45, S117 (2008). [CrossRef]
  31. D. Gillespie, “Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral.” Phys. Rev. E54, 2084–2091 (1996). [CrossRef]
  32. Y. Ould-Agha, A. Bétourné, O. Vanvincq, G. Bouwmans, and Y. Quiquempois, “Broadband bandgap guidance and mode filtering in radially hybrid photonic crystal fiber.” Opt. Express20, 6746–6760 (2012). [CrossRef] [PubMed]
  33. T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett.22, 961–963 (1997). [CrossRef] [PubMed]
  34. P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, “Back-seeding of higher order gain processes in picosecond supercontinuum generation.” Opt. Express16, 11954–11968 (2008). [CrossRef] [PubMed]
  35. A. Bétourné, Y. Quiquempois, G. Bouwmans, and M. Douay, “Design of a photonic crystal fiber for phase-matched frequency doubling or tripling,” Opt. Express16, 14255–14262 (2008). [CrossRef] [PubMed]
  36. K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region,” J. Lightwave Technol.10, 1553–1561 (1992). [CrossRef]
  37. K. Inoue, “Arrangement of fiber pieces for a wide wavelength conversion range by fiber four-wave mixing,” Opt. Lett.19, 1189–1191 (1994). [CrossRef] [PubMed]
  38. J. Laegsgaard, “Mode profile dispersion in the generalized nonlinear Schrödinger equation,” Opt. Express15, 16110–16123 (2007). [CrossRef] [PubMed]
  39. J. Hult, “A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol.25, 3770–3775 (2007). [CrossRef]
  40. P. L. François, “Nonlinear propagation of ultrashort pulses in optical fibers : total field formulation in the frequency domain,” J. Opt. Soc. Am. B8, 276–293 (1991). [CrossRef]
  41. N. Smith, F. Knox, N. Doran, K. Blow, and I. Bennion, “Enhanced power solitons in optical fibres with periodic dispersion management,” Electronics Letters32, 54–55 (1996). [CrossRef]
  42. O. Yaakobi and L. Friedland, “Autoresonant four-wave mixing in optical fibers,” Phys. Rev. A82, 023820 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited