OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30886–30894

Dark soliton synthesis using an optical pulse synthesizer and transmission through a normal-dispersion optical fiber

Ken Kashiwagi, Kiyonobu Mozawa, Yosuke Tanaka, and Takashi Kurokawa  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 30886-30894 (2013)
http://dx.doi.org/10.1364/OE.21.030886


View Full Text Article

Enhanced HTML    Acrobat PDF (1563 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We precisely generate dark solitons using an optical pulse synthesizer (OPS) at a repetition rate of 25 GHz and experimentally investigate soliton transmission through a normal-dispersion fiber. Because of their particular waveform, there are not many experimental studies. The OPS provides frequency-domain line-by-line modulation and produces arbitrary pulse waveforms. The soliton waveform has an intensity contrast greater than 20 dB. At certain input peak power, the pulse exhibits soliton transmission and maintains its initial waveform. The power agrees with soliton transmission theory. We confirm that the π phase shift at the center of the dark soliton is maintained after transmission through the fiber. We also investigate the influence of stimulated Brillouin scattering for long-distance transmission.

© 2013 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 10, 2013
Revised Manuscript: November 28, 2013
Manuscript Accepted: December 4, 2013
Published: December 6, 2013

Citation
Ken Kashiwagi, Kiyonobu Mozawa, Yosuke Tanaka, and Takashi Kurokawa, "Dark soliton synthesis using an optical pulse synthesizer and transmission through a normal-dispersion optical fiber," Opt. Express 21, 30886-30894 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-30886


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. M. Liao and G. P. Agrawal, “High-bit-rate soliton transmission using distributed amplification and dispersion management,” IEEE Photon. Technol. Lett.11(7), 818–820 (1999). [CrossRef]
  2. E. Marti-Panameno, J. J. Sanchez-Mondragon, and V. A. Vysloukh, “Theory of soliton pulse forming in an actively modelocked fiber laser,” IEEE J. Quantum Electron.30(3), 822–826 (1994). [CrossRef]
  3. F. M. Knox, W. Forysiak, and N. J. Doran, “10-Gbt/s soliton communication systems over standard fiber at 1.55 μm and the use of dispersion compensation,” J. Lightwave Technol.13(10), 1955–1962 (1995). [CrossRef]
  4. P. Emplit, M. Haelterman, and J.-P. Hamaide, “Picosecond dark soliton over 1-km fiber at 850 nm,” Opt. Lett.18(13), 1047 (1993). [CrossRef] [PubMed]
  5. P. Emplit, M. Haelterman, R. Kashyap, and M. De Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett.9(8), 1122–1124 (1997). [CrossRef]
  6. R. Leners, P. Emplit, D. Foursa, M. Haelterman, and R. Kashyap, “6.1-GHz dark-soliton generation and propagation by a fiber Bragg grating pulse-shaping technique,” J. Opt. Soc. Am. B14(9), 2339 (1997). [CrossRef]
  7. W. J. Tomlinson, R. J. Hawkins, A. M. Weiner, J. P. Heritage, and R. N. Thurston, “Dark optical solitons with finite-width background pulses,” J. Opt. Soc. Am. B6(3), 329 (1989). [CrossRef]
  8. J. A. R. Williams, K. M. Allen, N. J. Doran, and P. Emplit, “The generation of quasi-continuous trains of dark soliton-like pulses,” Opt. Commun.112(5-6), 333–338 (1994). [CrossRef]
  9. A. Atieh, P. Myslinski, J. Chrostowski, and P. Galko, “Generation of multigigahertz bright and dark soliton pulse trains,” Opt. Commun.133(1-6), 541–548 (1997). [CrossRef]
  10. W. Zhao and E. Bourkoff, “Generation, propagation, and amplification of dark solitons,” J. Opt. Soc. Am. B9(7), 1134 (1992). [CrossRef]
  11. T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997). [CrossRef]
  12. H. Takenouchi, H. Tsuda, and T. Kurokawa, “Analysis of optical-signal processing using an arrayed-waveguide grating,” Opt. Express6(6), 124–135 (2000). [CrossRef] [PubMed]
  13. K. Kashiwagi, Y. Kodama, R. Kobe, T. Shioda, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of optical short pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.48(9), 09LF02 (2009). [CrossRef]
  14. K. Kashiwagi, H. Ishizu, and T. Kurokawa, “Fiber transmission characteristics of parabolic pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.50(9), 092501 (2011). [CrossRef]
  15. W. Qiao, K. Mozawa, K. Kashiwagi, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of phase only pulse and its dispersion compensation in high power regime,” IEICE Electron. Express9(5), 410–415 (2012). [CrossRef]
  16. K. Ohno, T. Tanabe, and F. Kannari, “Adaptive pulse shaping of phase and amplitude of an amplified femtosecond pulse laser by direct reference to frequency-resolved optical gating traces,” J. Opt. Soc. Am. B19(11), 2781 (2002). [CrossRef]
  17. R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, “Thinning-out in optimized pulse shaping method using genetic algorithm,” Rev. Sci. Instrum.74(5), 2670 (2003). [CrossRef]
  18. Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009). [CrossRef]
  19. J. P. Hamaide, P. Emplit, and M. Haelterman, “Dark-soliton jitter in amplified optical transmission systems,” Opt. Lett.16(20), 1578–1580 (1991). [CrossRef] [PubMed]
  20. P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron.27(10), 2347–2355 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited