OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30918–30931

Optical properties of biaxial nanopatterned gold plasmonic nanowired grid polarizer

Lars Martin Sandvik Aas, Morten Kildemo, Christian Martella, Maria Caterina Giordano, Daniele Chiappe, and Francesco Buatier de Mongeot  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 30918-30931 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2644 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Gold nanoparticles deposited on self-organized nano-ripple quartz substrates have been studied by spectroscopic Mueller matrix ellipsometry. The surface was found to have biaxial anisotropic optical properties. For electric field components normal to the ripples the periodic and disconnected nature of the in plane nanowires gives rise to an optical response dominated by the localized plasmon resonance. In the direction parallel to the ripples the gold nanoparticles are aligned closely leading to localized plasmon resonances in the infrared. As Au was deposited at an angle oblique to the surface normal, the gold nanoparticles were formed on the side of the ripples facing the incoming evaporation flux. This makes the gold particles slightly inclined, correspondingly the principal coordinate system of the biaxial dielectric tensor results tilted. The anisotropic plasmonic optical response results in a strong polarizing effect, making it suitable as a plasmonic nanowired grid polarizer.

© 2013 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(260.2130) Physical optics : Ellipsometry and polarimetry
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: September 13, 2013
Revised Manuscript: November 18, 2013
Manuscript Accepted: November 18, 2013
Published: December 9, 2013

Lars Martin Sandvik Aas, Morten Kildemo, Christian Martella, Maria Caterina Giordano, Daniele Chiappe, and Francesco Buatier de Mongeot, "Optical properties of biaxial nanopatterned gold plasmonic nanowired grid polarizer," Opt. Express 21, 30918-30931 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Wagner, S. Haslbeck, and L. Stievano, “Before striking gold in gold-ruby glass,” Nature407, 691–692 (2000). [CrossRef] [PubMed]
  2. P. A. Letnes, I. Simonsen, and D. L. Mills, “Substrate influence on the plasmonic response of clusters of spherical nanoparticles,” Phys. Rev. B83, 075426 (2011). [CrossRef]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices.” Nat. Mater.9, 205–213 (2010). [CrossRef] [PubMed]
  4. D. Smith and D. Schurig, “Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev. Lett.90, 077405 (2003). [CrossRef] [PubMed]
  5. A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier de Mongeot, “Tailored second harmonic generation from self-organized metal nano-wires arrays.” Opt. Express17, 3603–3609 (2009). [CrossRef] [PubMed]
  6. A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular Dichroism in the Optical Second-Harmonic Emission of Curved Gold Metal Nanowires,” Phys. Rev. Lett.107, 257401 (2011). [CrossRef]
  7. V. Robbiano, M. Giordano, C. Martella, F. D. Stasio, D. Chiappe, F. B. de Mongeot, and D. Comoretto, “Hybrid Plasmonic–Photonic Nanostructures: Gold Nanocrescents Over Opals,” Adv. Opt. Mat.1, 389–396 (2013). [CrossRef]
  8. T. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci.86, 328–376 (2011). [CrossRef]
  9. T. W. H. Oates, A. Keller, S. Facsko, and A. Mücklich, “Aligned Silver Nanoparticles on Rippled Silicon Templates Exhibiting Anisotropic Plasmon Absorption,” Plasmonics2, 47–50 (2007). [CrossRef]
  10. T. W. H. Oates, M. Ranjan, S. Facsko, and H. Arwin, “Highly anisotropic effective dielectric functions of silver nanoparticle arrays,” Opt. Express19, 2014–2028 (2011). [CrossRef] [PubMed]
  11. S. Camelio, D. Babonneau, D. Lantiat, L. Simonot, and F. Pailloux, “Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion,” Phys. Rev. B.80, 1–10 (2009). [CrossRef]
  12. M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold island films—a spectroscopic ellipsometry study,” Thin Solid Films519, 2946–2950 (2011). [CrossRef]
  13. A. J. de Vries, E. S. Kooij, H. Wormeester, A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys.101, 053703 (2007). [CrossRef]
  14. E. Hecht, Optics (Addison Wesley, 2002).
  15. A. Toma, D. Chiappe, D. Massabò, C. Boragno, and F. Buatier de Mongeot, “Self-organized metal nanowire arrays with tunable optical anisotropy,” Appl. Phys. Lett.93, 163104 (2008). [CrossRef]
  16. L. Anghinolfi, R. Moroni, L. Mattera, M. Canepa, and F. Bisio, “Flexible Tuning of Shape and Arrangement of Au Nanoparticles in 2-Dimensional Self-Organized Arrays: Morphology and Plasmonic Response,” J. Phys. Chem. C115, 14036–14043 (2011). [CrossRef]
  17. A. Toma, D. Chiappe, C. Boragno, and F. Buatier de Mongeot, “Self-organized ion-beam synthesis of nanowires with broadband plasmonic functionality,” Phys. Rev. B81, 165436(2010). [CrossRef]
  18. L. M. S. Aas, I. S. Nerbø, M. Kildemo, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Mueller matrix imaging of plasmonic polarizers on nanopatterned surface,” Proc. SPIE8082, 80822W (2011). [CrossRef]
  19. A. Toma, F. Buatier de Mongeot, R. Buzio, G. Firpo, S. Bhattacharyya, C. Boragno, and U. Valbusa, “Ion beam erosion of amorphous materials: evolution of surface morphology,” Nucl. Instrum. Methods230, 551–554 (2005). [CrossRef]
  20. D. Chiappe, A. Toma, and F. Buatier de Mongeot, “Tailoring resisitivity anisotropy of nanorippled metal films: Electrons surfing on gold waves,” Phys. Rev. B86, 045414 (2012). [CrossRef]
  21. R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac Sci. Technol. A6, 2390–2395 (1988). [CrossRef]
  22. W. L. Chan and E. Chason, “Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering,” J. Appl. Phys.101, 121301 (2007). [CrossRef]
  23. U. Valbusa, C. Boragno, and F. Buatier de Mongeot, “Nanostructuring by ion beam,” Mater. Sci. Eng. C23, 201–209 (2003). [CrossRef]
  24. I. Nerbø, S. L. Roy, M. Foldyna, E. Søndergård, and M. Kildemo, “Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment,” Opt. Express19, 571–575 (2011). [CrossRef]
  25. M. Schubert, “Generalized ellipsometry and complex optical systems,” Thin Solid Films313–314, 323–332 (1998). [CrossRef]
  26. D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films.” Opt. Lett.34, 992–994 (2009). [CrossRef] [PubMed]
  27. R. Azzam and N. Bashara, Ellipsometry and Polarized light (North-Holland, 1977).
  28. P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci.96, 81–107 (1980). [CrossRef]
  29. T. Yamaguchi, S. Yoshida, and a. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films21, 173–187 (1974). [CrossRef]
  30. T. Yamaguchi, H. Takahashi, and A. Sudoh, “Optical behavior of a metal island film,” J. Opt. Soc. Am.68, 1039 (1978). [CrossRef]
  31. J. Spanier and I. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films,” Phys. Rev. B61, 10437–10450 (2000). [CrossRef]
  32. G. A. Niklasson and C. G. Granqvist, “Optical properties and solar selectivity of coevaporated Co-Al2O3 composite films,” J. Appl. Phys.55, 3382 (1984). [CrossRef]
  33. R. Lazzari and I. Simonsen, “GranFilm: a software for calculating thin-layer dielectric properties and Fresnel coefficients,” Thin Solid Films419, 124–136 (2002). [CrossRef]
  34. I. Simonsen, R. Lazzari, J. Jupille, and S. Roux, “Numerical modeling of the optical response of supported metallic particles,” Phys. Rev. B61, 7722–7733 (2000). [CrossRef]
  35. S. A. Mayer, Plasmonics, Fundamentals and Applications (Springer, 2007).
  36. D. De Sousa Meneses, G. Gruener, M. Malki, and P. Echegut, “Causal Voigt profile for modeling reflectivity spectra of glasses,” J. Non-Cryst. Solids351, 124–129 (2005). [CrossRef]
  37. E. D. Palik, Handbook of Optical Constants of Solids I (Academic, 1985).
  38. J. Woollam, B. D. Johs, J. N. Herzinger, M. Craig, J. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” Proc. SPIECR72, 3–28 (1999).
  39. M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B.68, 81–85 (1999). [CrossRef]
  40. A. Drauschke, B. Schnabel, and F. Wyrowski, “Comment on the inverse polarization effect in metal-stripe polarizers,” J. Opt. A.3, 67–71 (2001). [CrossRef]
  41. S. Lu and R. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A.13, 1106–1113 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited