OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30932–30946

Hybrid diamond-silicon angular-dispersive x-ray monochromator with 0.25-meV energy bandwidth and high spectral efficiency

S. Stoupin, Y. V. Shvyd’ko, D. Shu, V. D. Blank, S. A. Terentyev, S. N. Polyakov, M. S. Kuznetsov, I. Lemesh, K. Mundboth, S. P. Collins, J. P. Sutter, and M. Tolkiehn  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 30932-30946 (2013)
http://dx.doi.org/10.1364/OE.21.030932


View Full Text Article

Enhanced HTML    Acrobat PDF (2551 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the design, implementation, and performance of an x-ray monochromator with ultra-high energy resolution (ΔE/E ≃ 2.7 × 10−8) and high spectral efficiency using x rays with photon energies E ≃ 9.13 keV. The operating principle of the monochromator is based on the phenomenon of angular dispersion in Bragg back-diffraction. The optical scheme of the monochromator is a modification of a scheme reported earlier [Shvyd’ko et al., Phys. Rev. A 84, 053823 (2011)], where a collimator/wavelength selector Si crystal was replaced with a 100-μm-thick type IIa diamond crystal. This modification provides a very-small-energy bandwidth ΔE ≃ 0.25 meV, a 3-fold increase in the aperture of the accepted beam, a reduction in the cumulative angular dispersion rate of x rays emanating from the monochromator for better focusing on a sample, a sufficient angular acceptance matching the angular divergence of an undulator source (≈ 10 μrad), and an improved throughput due to low x-ray absorption in the thin diamond crystal. The measured spectral efficiency of the monochromator was ≈ 65% with an aperture of 0.3 × 1 mm2. The performance parameters of the monochromator are suitable for inelastic x-ray spectroscopy with an absolute energy resolution ΔE < 1 meV.

© 2013 Optical Society of America

OCIS Codes
(120.4140) Instrumentation, measurement, and metrology : Monochromators
(220.1920) Optical design and fabrication : Diamond machining
(230.1480) Optical devices : Bragg reflectors
(300.6560) Spectroscopy : Spectroscopy, x-ray
(340.6720) X-ray optics : Synchrotron radiation

ToC Category:
X-ray Optics

History
Original Manuscript: September 16, 2013
Revised Manuscript: October 30, 2013
Manuscript Accepted: November 1, 2013
Published: December 9, 2013

Citation
S. Stoupin, Y. V. Shvyd’ko, D. Shu, V. D. Blank, S. A. Terentyev, S. N. Polyakov, M. S. Kuznetsov, I. Lemesh, K. Mundboth, S. P. Collins, J. P. Sutter, and M. Tolkiehn, "Hybrid diamond-silicon angular-dispersive x-ray monochromator with 0.25-meV energy bandwidth and high spectral efficiency," Opt. Express 21, 30932-30946 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-30932


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Burkel, “Phonon spectroscopy by inelastic x-ray scattering,” Rep. Prog. Phys.63, 171 (2000). [CrossRef]
  2. H. Sinn, “Spectroscopy with meV energy resolution,” J. Phys.: Condens. Matter13, 7525–7537 (2001). [CrossRef]
  3. M. Krisch and F. Sette, Light Scattering in Solids IX (Springer, Berlin, 2007), vol. 108 of Topics in Applied Physics, chap. Inelastic X-Ray Scattering from Phonons, pp. 317–370.
  4. E. Gerdau and H. de Waard, eds., Nuclear Resonant Scattering of Synchrotron Radiation (Baltzer, 1999/2000). Special issues of the Hyperfine Interact., Vol. 123–125.
  5. R. Röhlsberger, Nuclear Condensed Matter Physics with Synchrotron Radiation. Basic Principles, Methodology and Applications, vol. 208 of Springer Tracts in Modern Physics (Springer Verlag, Berlin-Heidelberg, 2004).
  6. H.-C. Wille, Y. V. Shvyd’ko, E. Gerdau, M. Lerche, M. Lucht, H. D. Rüter, and J. Zegenhagen, “Anomalous isotopic effect on the lattice constant of silicon,” Phys. Rev. Lett.89, 285901 (2002). [CrossRef]
  7. M. Y. Hu, H. Sinn, A. Alatas, E. E. Alp, W. Sturhahn, H.-C. Wille, Y. V. Shvyd’ko, J. P. Sutter, J. Bandaru, E. E. Haller, V. I. Ozhogin, S. Rodrigues, R. Colella, E. Kartheuser, and M. A. Villert, “The effect of isotopic composition on the lattice parameter of germanium,” Phys. Rev. B67, 113306 (2003). [CrossRef]
  8. S. Stoupin and Y. V. Shvyd’ko, “Thermal expansion of diamond at low temperatures,” Phys. Rev. Lett.104, 085901 (2010). [CrossRef] [PubMed]
  9. M. Yabashi, K. Tamasaku, and T. Ishikawa, “Measurement of x-ray pulse widths by intensity interferometry,” Phys. Rev. Lett.88, 244801 (2002). [CrossRef] [PubMed]
  10. Y. Shvyd’ko, X-Ray Optics – High-Energy-Resolution Applications, vol. 98 of Optical Sciences (Springer, Berlin Heidelberg New York, 2004).
  11. M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “An x-ray monochromator with an energy resolution of 8 × 10−9at 14.4 keV,” Rev. Sci. Instrum.72, 4080 (2001). [CrossRef]
  12. R. Verbeni, F. Sette, M. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad.3, 62–64 (1996). [CrossRef]
  13. T. S. Toellner, A. Alatas, and A. H. Said, “Six-reflection meV-monochromator for synchrotron radiation,” J. Synchrotron Rad.18, 605–611 (2011). [CrossRef]
  14. T. Matsushita and U. Kaminaga, “A systematic method of estimating the performance of X-ray optical systems for synchrotron radiation. II. Treatment in position-angle–wavelength space,” J. Appl. Crystallogr.13, 472–478 (1980). [CrossRef]
  15. S. Brauer, G. B. Stephenson, and M. Sutton, “Perfect Crystals in the Asymmetric Bragg Geometry as Optical Elements for Coherent X-ray Beams,” J. Synchrotron Rad.2, 163–173 (1995). [CrossRef]
  16. Y. V. Shvyd’ko, M. Lerche, U. Kuetgens, H. D. Rüter, A. Alatas, and J. Zhao, “X-ray bragg diffraction in asymmetric backscattering geometry,” Phys. Rev. Lett.97, 235502 (2006). [CrossRef]
  17. Y. V. Shvyd’ko, U. Kuetgens, H. D. Rüter, M. Lerche, A. Alatas, and J. Zhao, “Progress in the development of new optics for very high resolution inelastic x-ray scattering spectroscopy,” AIP Conf. Proc.879, 737–745 (2007). [CrossRef]
  18. Y. Shvyd’ko, S. Stoupin, D. Shu, and R. Khachatryan, “Using angular dispersion and anomalous transmission to shape ultramonochromatic x rays,” Phys. Rev. A84, 053823 (2011). [CrossRef]
  19. Y. Shvyd’ko, S. Stoupin, K. Mundboth, and J. Kim, “Hard-x-ray spectrographs with resolution beyond 100 μev,” Phys. Rev. A87, 043835 (2013). [CrossRef]
  20. Y. Q. Cai, D. S. Coburn, A. Cunsolo, J. W. Keister, M. G. Honnicke, X. R. Huang, C. N. Kodituwakku, Y. Stetsko, A. Suvorov, N. Hiraoka, K. D. Tsuei, and H. C. Wille, “The ultrahigh resolution IXS beamline of NSLS-II: Recent advances and scientific opportunities,” J. Phys.: Conf. Ser.425, 202001 (2013). [CrossRef]
  21. Y. Shvyd’ko, “Enhanced x-ray angular dispersion and x-ray spectrographs with resolving power beyond 108,” Proc. SPIE, Advances in X-Ray/EUV Optics and Components VII8502, 85020J (2012). [CrossRef]
  22. A. Souvorov, M. Drakopoulos, I. Snigireva, and A. Snigirev, “Asymmetrically cut crystals as optical elements for coherent x-ray beam conditioning,” J. Phys. D: Appl. Phys.32, A184A192 (1999). [CrossRef]
  23. V. G. Kohn, A. I. Chumakov, and R. Rüffer, “Wave theory of focusing monochromator of synchrotron radiation,” J. Synchrotron Rad.16, 635–641 (2009). [CrossRef]
  24. X. R. Huang, A. T. Macrander, M. G. Honnicke, Y. Q. Cai, and P. Fernandez, “Dispersive spread of virtual sources by asymmetric X-ray monochromators,” J. Appl. Cryst.45, 255262 (2012). [CrossRef]
  25. R. C. Burns, A. I. Chumakov, S. H. Connell, D. Dube, H. P. Godfried, J. O. Hansen, J. Hrtwig, J. Hoszowska, F. Masiello, L. Mkhonza, M. Rebak, A. Rommevaux, R. Setshedi, and P. V. Vaerenbergh, “HPHT growth and x-ray characterization of high-quality type IIa diamond,” J. Phys.: Condens. Matter21, 364224 (2009). [CrossRef]
  26. S. Polyakov, V. Denisov, N.V. Kuzmin, M. Kuznetsov, S. Martyushov, S. Nosukhin, S. Terentiev, and V. Blank, “Characterization of top-quality type IIa synthetic diamonds for new x-ray optics,” Diamond Relat. Mater.20, 726–728 (2011). [CrossRef]
  27. H. Sumiya and K. Tamasaku, “Large defect-free synthetic type IIa diamond crystals synthesized via high pressure and high temperature,”Jpn. J. Appl. Phys.51, 090102 (2012). [CrossRef]
  28. Y. V. Shvyd’ko, S. Stoupin, V. Blank, and S. Terentyev, “Near 100% Bragg reflectivity of X-rays,” Nat. Photonics5, 539 (2011). [CrossRef]
  29. J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012). [CrossRef]
  30. S. Stoupin, V. Blank, S. Terentyev, S. Polyakov, V. Denisov, M. Kuznetsov, Y. Shvyd’ko, D. Shu, P. Emma, J. Maj, and J. Katsoudas, “Diamond crystal optics for self-seeding of hard X-rays in X-ray free-electron lasers,” Diamond Relat. Mater.33, 1–4 (2013). [CrossRef]
  31. D. Shu, S. Stoupin, R. Khachatryan, K. Goetze, T. Roberts, and Y. Shvyd’ko, “Optomechanical design of ultrahigh-resolution monochromator and analyzer for inelastic x-ray scattering spectrometer at the Advanced Photon Source,”Proc. SPIE: Optomechanics8125, 812507 (2011). [CrossRef]
  32. D. Shu, S. Stoupin, R. Khachatryan, K. A. Goetze, T. Roberts, K. Mundboth, S. Collins, and Y. Shvyd’ko, “Precision mechanical design of an ultrahigh-resolution inelastic x-ray scattering spectrometer system with CDFDW optics at the APS,” J. Phys: Conf. Ser.425, 052031 (2013). [CrossRef]
  33. D. Shu, Y. Shvydko, S. Stoupin, R. Khachatryan, K. Goetze, and T. Roberts, “Precision mechanical structure of an ultra-high-resolution spectrometer for inelastic x-ray scattering instrument,”13551788, U.S. patent pending (2012).
  34. T. Toellner, “Monochromatization of synchrotron radiation for nuclear resonant scattering experiments,”Hyper-fine Interact.125, 3–28 (2000). [CrossRef]
  35. A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett.77, 31–33 (2000). [CrossRef]
  36. T. S. Toellner, A. Alatas, A. Said, D. Shu, W. Sturhahn, and J. Zhao, “A cryogenically stabilized meV-monochromator for hard X-rays,” J. Synchrotron Rad.13, 211–215 (2006). [CrossRef]
  37. T. S. Toellner, A. Alatas, and A. H. Said, “Six-reflection meV-monochromator for synchrotron radiation,” J. Synchrotron Rad.18, 605–611 (2011). [CrossRef]
  38. S. Stoupin, Y. Shvyd’ko, D. Shu, R. Khachatryan, X. Xiao, F. DeCarlo, K. Goetze, T. Roberts, C. Roehrig, and A. Deriy, “Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals,” Rev. Sci. Instrum.83, 023105 (2012). [CrossRef] [PubMed]
  39. Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited