OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30964–30974

Perfect blackbody radiation from a graphene nanostructure with application to high-temperature spectral emissivity measurements

Takahiro Matsumoto, Tomoaki Koizumi, Yasuyuki Kawakami, Koichi Okamoto, and Makoto Tomita  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 30964-30974 (2013)
http://dx.doi.org/10.1364/OE.21.030964


View Full Text Article

Enhanced HTML    Acrobat PDF (2108 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the successful fabrication of a novel type of blackbody material based on a graphene nanostructure. We demonstrate that the graphene nanostructure not only shows a low reflectance comparable to that of a carbon nanotube array but also shows an extremely high heat resistance at temperatures greater than 2500 K. The graphene nanostructure, which has an emissivity higher than 0.99 over a wide range of wavelengths, behaves as a standard blackbody material; therefore, the radiation spectrum and the temperature can be precisely measured in a simple manner. Here, the spectral emissivities of tungsten and tantalum are experimentally obtained using this ideal blackbody material and are compared to previously reported spectra. We clearly demonstrate the existence of a temperature-independent fixed point of emissivity at a certain wavelength. Both the spectral emissivity as a function of temperature and the cross-over point in the emissivity spectrum are well described by the complex dielectric function based on the Lorentz-Drude model with the phonon-scattering effect.

© 2013 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(160.4236) Materials : Nanomaterials
(290.6815) Scattering : Thermal emission

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 1, 2013
Revised Manuscript: November 27, 2013
Manuscript Accepted: November 28, 2013
Published: December 9, 2013

Citation
Takahiro Matsumoto, Tomoaki Koizumi, Yasuyuki Kawakami, Koichi Okamoto, and Makoto Tomita, "Perfect blackbody radiation from a graphene nanostructure with application to high-temperature spectral emissivity measurements," Opt. Express 21, 30964-30974 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-30964


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Cao, X. Zhang, X. Xu, B. Wei, and D. Wu, “Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption,” Sol. Energy Mater. Sol. Cells70(4), 481–486 (2002). [CrossRef]
  2. A. R. Shashikala, A. K. Sharma, and D. R. Bhandari, “Solar selective black nickel-cobalt coatings on aluminum alloys,” Sol. Energy Mater. Sol. Cells91(7), 629–635 (2007). [CrossRef]
  3. C. G. Granqvist, “Radiative heating and cooling with spectrally selective surfaces,” Appl. Opt.20(15), 2606–2615 (1981). [CrossRef] [PubMed]
  4. S. Kodama, M. Horiuchi, T. Kunii, and K. Kuroda, “Ultra-black nickel-phosphorous alloy optical absorber,” IEEE Trans. Instrum. Meas.39(1), 230–232 (1990). [CrossRef]
  5. R. C. Brown, P. J. Brewer, and J. T. Milton, “The physical and chemical properties of electroless nickel-phosphorus alloys and low reflectance nickel-phosphorus black surfaces,” J. Mater. Chem.12(9), 2749–2754 (2002). [CrossRef]
  6. C. E. Johnson, “Black electroless nickel surface morphologies with extremely high light absorption capacity,” Met. Finish.78, 21–24 (1980).
  7. E. A. Taft and H. R. Phillipp, “Optical properties of graphite,” Phys. Rev.138(1A), A197–A202 (1965). [CrossRef]
  8. F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett.78(22), 4289–4292 (1997). [CrossRef]
  9. H. Bao, X. Ruan, and T. S. Fisher, “Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations,” Opt. Express18(6), 6347–6359 (2010). [CrossRef] [PubMed]
  10. Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett.8(2), 446–451 (2008). [CrossRef] [PubMed]
  11. Z.-P. Yang, M. L. Hsieh, J. A. Bur, L. Ci, L. M. Hanssen, B. Wilthan, P. M. Ajayan, and S. Y. Lin, “Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array,” Appl. Opt.50(13), 1850–1855 (2011). [CrossRef] [PubMed]
  12. “The darkest manmade substance,” in Guinness World Records (Bantam Doubleday Dell, 2004), p 242.
  13. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A.106(15), 6044–6047 (2009). [CrossRef] [PubMed]
  14. T. Matsumoto, Y. Neo, H. Mimura, and M. Tomita, “Determining the physisorption energies of molecules on graphene nanostructures by measuring the stochastic emission-current fluctuation,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.77(3), 031611 (2008). [CrossRef] [PubMed]
  15. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005). [CrossRef] [PubMed]
  16. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature438(7065), 201–204 (2005). [CrossRef] [PubMed]
  17. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007). [CrossRef] [PubMed]
  18. W. E. Forsythe and A. G. Worthing, “The properties of tungsten and the characteristics of tungsten lamps,” Astrophys. J.61, 146–185 (1925). [CrossRef]
  19. A. G. Worthing, “Physical properties of well seasoned molybdenum and tantalum as a function of temperature,” Phys. Rev.28(1), 190–201 (1926). [CrossRef]
  20. B. T. Barnes, “Optical constants of incandescent refractory metals,” J. Opt. Soc. Am.56(11), 1546–1550 (1966). [CrossRef]
  21. J. C. De Vos, “A new determination of the emissivity of tungsten ribbon,” Physica20(7–12), 690–714 (1954). [CrossRef]
  22. L. N. Latyev, V. Y. Chekhovskoi, and E. N. Shestakov, “Tungsten as a standard material for monochromatic emissivity,” High Temp. High Press.4, 679–686 (1972).
  23. C. Ronchi, J. P. Hiernaut, and G. J. Hyland, “Emissivity X points in solid and liquid refractory transition metals,” Metrologia29(4), 261–271 (1992). [CrossRef]
  24. D. T. F. Marple, “Spectral emissivity of rhenium,” J. Opt. Soc. Am.46(7), 490–494 (1956). [CrossRef]
  25. T. Matsumoto and H. Mimura, “Intense electron emission from graphite nanocraters and their application to time resolved X-ray radiography,” Appl. Phys. Lett.84(10), 1804–1806 (2004). [CrossRef]
  26. T. Matsumoto and H. Mimura, “High intensity pulse X-ray generation by using graphite-nanocrater cold cathode,” J. Vac. Sci. Technol. B23(2), 831–835 (2005). [CrossRef]
  27. K. Shiozawa, Y. Neo, M. Okada, N. Ishikawa, Y. Nakayama, and H. Mimura, “Structural investigation of sputter-induced graphite nanoneedle field emitters,” Jpn. J. Appl. Phys.46(9B), 6419–6422 (2007). [CrossRef]
  28. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006). [CrossRef] [PubMed]
  29. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010). [CrossRef]
  30. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008). [CrossRef] [PubMed]
  31. M. Zhang, K. R. Atkinson, and R. H. Baughman, “Multifunctional carbon nanotube yarns by downsizing an ancient technology,” Science306(5700), 1358–1361 (2004). [CrossRef] [PubMed]
  32. M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309(5738), 1215–1219 (2005). [CrossRef] [PubMed]
  33. X. J. Wang, J. D. Flicker, B. J. Lee, W. J. Ready, and Z. M. Zhang, “Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes,” Nanotechnology20(21), 215704 (2009). [CrossRef] [PubMed]
  34. W. A. deHeer, W. S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, “Aligned carbon nanotube films: Production and optical and electronic properties,” Science268(5212), 845–847 (1995). [CrossRef] [PubMed]
  35. P. Vinten, J. Lefebvre, and P. Finnie, “Visible iridescence from self-assembled periodic rippling in vertically aligned carbon nanotube forests,” Appl. Phys. Lett.97(10), 101901 (2010). [CrossRef]
  36. M. Planck, “Ueber das gesetz der energieverteilung im normalspectrum,” Ann. Phys.309(3), 553–563 (1901). [CrossRef]
  37. J. Wei, H. Zhu, D. Wu, and B. Wei, “Carbon nanotube filaments in household light bulbs,” Appl. Phys. Lett.84(24), 4869–4871 (2004). [CrossRef]
  38. M. Sveningsson, M. Jonsson, O. A. Nerushev, F. Rohmund, and E. E. B. Campbell, “Blackbody radiation from resistively heated multiwalled carbon nanotubes during field emission,” Appl. Phys. Lett.81(6), 1095–1097 (2002). [CrossRef]
  39. P. Li, K. Jiang, M. Liu, Q. Li, S. Fan, and J. Sun, “Polarized incandescent light emission from carbon nanotubes,” Appl. Phys. Lett.82(11), 1763–1765 (2003). [CrossRef]
  40. M. F. Modest, Radiative Heat Transfer (Academic, 2013), Chapter 3.
  41. D. J. Price, “A theory of reflectivity and emissivity,” Proc. Phys. Soc.62(5), 278–283 (1949). [CrossRef]
  42. S. Roberts, “Interpretation of the optical properties of metal surfaces,” Phys. Rev.100(6), 1667–1671 (1955). [CrossRef]
  43. S. Roberts, “Optical properties of nickel and tungsten and their interpretation according to Drude’s formula,” Phys. Rev.114(1), 104–115 (1959). [CrossRef]
  44. J. M. Ziman, Principles of the Theory of Solids, 2nd ed. (Cambridge University, 1972), Chapter 7.
  45. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited