OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30975–30983

Design and optical characterization of high-Q guided-resonance modes in the slot-graphite photonic crystal lattice

Luis Javier Martínez, Ningfeng Huang, Jing Ma, Chenxi Lin, Eric Jaquay, and Michelle L. Povinelli  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 30975-30983 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3821 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new photonic crystal structure is generated by using a regular graphite lattice as the base and adding a slot in the center of each unit cell to enhance field confinement. The theoretical Q factor in an ideal structure is over 4 × 105. The structure was fabricated on a silicon-on-insulator wafer and optically characterized by transmission spectroscopy. The resonance wavelength and quality factor were measured as a function of slot height. The measured trends show good agreement with simulation.

© 2013 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: October 7, 2013
Revised Manuscript: November 10, 2013
Manuscript Accepted: November 18, 2013
Published: December 9, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Luis Javier Martínez, Ningfeng Huang, Jing Ma, Chenxi Lin, Eric Jaquay, and Michelle L. Povinelli, "Design and optical characterization of high-Q guided-resonance modes in the slot-graphite photonic crystal lattice," Opt. Express 21, 30975-30983 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Noda and T. Baba, Roadmap on Photonic Crystals, 1 (Kluwer Academic Publisher, 2003). [CrossRef]
  2. S. Noda, “Recent progresses and future prospects of two- and three-dimensional photonic crystals,” J. Lightwave Technol.24, 4554–4567 (2006). [CrossRef]
  3. T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B63, 125107 (2001). [CrossRef]
  4. M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett.83, 2542–2544 (2003). [CrossRef]
  5. H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett.80, 3476–3478 (2002). [CrossRef]
  6. J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, R. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett.39, 526–528 (2003). [CrossRef]
  7. M. Notomi, H. Suzuki, and T. Tamamura, “Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,” Appl. Phys. Lett.78, 1325–1327 (2001). [CrossRef]
  8. L. J. Martínez, B. Alén, I. Prieto, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, P. Viktorovitch, and P. A. Postigo, “Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure,” Opt. Express17, 15043–15051 (2009). [CrossRef] [PubMed]
  9. F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, and A. Levenson, “Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes,” Appl. Phys. Lett.86, 011116 (2005). [CrossRef]
  10. B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci.110, 13711–13716 (2013). [CrossRef] [PubMed]
  11. M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express17, 24224–24233 (2009). [CrossRef]
  12. M. E. Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express18, 22702–22714 (2010). [CrossRef] [PubMed]
  13. L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express18, 3693–3699 (2010). [CrossRef] [PubMed]
  14. T. Kaji, T. Yamada, R. Ueda, and A. Otomo, “Enhanced fluorescence emission from single molecules on a two-dimensional photonic crystal slab with low background emission,” J. Phys. Chem. Lett.2, 1651–1656 (2011). [CrossRef]
  15. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat Nanotechnology2, 515–520 (2007). [CrossRef]
  16. C. A. Mejia, A. Dutt, and M. L. Povinelli, “Light-assisted templated self assembly using photonic crystal slabs,” Opt. Express19, 11422–11428 (2011). [CrossRef] [PubMed]
  17. E. Jaquay, L. J. Martínez, C. A. Mejia, and M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Letters13, 2290–2294 (2013). [CrossRef] [PubMed]
  18. J. Ma, L. J. Martínez, and M. L. Povinelli, “Optical trapping via guided resonance modes in a slot-Suzuki-phase photonic crystal lattice,” Opt. Express20, 6816–6824 (2012). [CrossRef] [PubMed]
  19. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29, 1209–1211 (2004). [CrossRef] [PubMed]
  20. X. Letartre, J. Mouette, J. Leclercq, P. Rojo Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,” J. Lightwave Technol.21, 1691–1699 (2003). [CrossRef]
  21. X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, “Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures,” J. Opt. Soc. Am. B22, 2581–2595 (2005). [CrossRef]
  22. L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letatre, and P. Viktorovitch, “Slow bloch mode confinement in 2D photonic crystals for surface operating devices,” Opt. Express16, 3136–3145 (2008). [CrossRef] [PubMed]
  23. H. Akhavan, M. El-Beheiry, R. Schilling, D. Aydin, and O. Levi, “Evaluation of high quality factor photonic crystal slabs for biosensing,” in “CLEO:2011 - Laser Applications to Photonic Applications,” (Optical Society of America, 2011), p. JWA105.
  24. G. Alagappan, X. W. Sun, and H. D. Sun, “Symmetries of the eigenstates in an anisotropic photonic crystal,” Phys. Rev. B77, 195117 (2008). [CrossRef]
  25. L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B73, 235114 (2006). [CrossRef]
  26. K. Sakoda, Optical Properties of Photonic Crystals, 2 (Springer-Verlag, Berlin, 2004).
  27. T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express16, 13809–13817 (2008). [CrossRef] [PubMed]
  28. C. Lin, L. J. Martínez, and M. L. Povinelli, “Fabrication of transferrable, fully suspended silicon photonic crystal nanomembranes exhibiting vivid structural color and high-Q guided resonance,” J. Vac. Tech. B31, 050606 (2013). [CrossRef]
  29. M. Skorobogatiy, G. Bégin, and A. Talneau, “Statistical analysis of geometrical imperfections from the images of 2D photonic crystals,” Opt. Express13, 2487–2502 (2005). [CrossRef] [PubMed]
  30. V. Astratov, M. Skolnick, S. Brand, T. Krauss, O. Z. Karimov, R. M. Stevenson, D. Whittaker, I. Culshaw, and R. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” Optoelectronics, IEE Proceedings -145, 398–402 (1998). [CrossRef]
  31. V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B60, R16255(1999). [CrossRef]
  32. Y. Nazirizadeh, U. Bog, S. Sekula, T. Mappes, U. Lemmer, and M. Gerken, “Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers,” Opt. Express18, 19120–19128 (2010). [CrossRef] [PubMed]
  33. N. Huang, L. J. Martínez, and M. L. Povinelli, “Tuning the transmission lineshape of a photonic crystal slab guided-resonance mode by polarization control,” Opt. Express21, 20675–20682 (2013). [CrossRef] [PubMed]
  34. D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A74, 064901 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited