OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30984–30992

Double-helix enhanced axial localization in STED nanoscopy

G. P. J. Laporte, D. B. Conkey, A. Vasdekis, R. Piestun, and D. Psaltis  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 30984-30992 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2973 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Stimulated Emission Depletion (STED) microscopy enables subdiffraction resolution in the imaging plane. However, STED's lateral improvement in resolution is generally better than the enhancement in the axial direction. Here, we combine conventional STED superresolution imaging with Double Helix Point Spread Function (PSF) modulation for axial localization with a precision better than the classical Rayleigh limit. To demonstrate the capability of the method we resolve in a STED microscope sub-diffraction fluorescent bead assemblies, and localize them axially with better than 25nm precision. We also show that the same setup allows straightforward implementation of wide field phase contrast by imaging larger beads with spiral and dark field phase filtering.

© 2013 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy

ToC Category:

Original Manuscript: October 7, 2013
Revised Manuscript: November 17, 2013
Manuscript Accepted: November 22, 2013
Published: December 9, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

G. P. J. Laporte, D. B. Conkey, A. Vasdekis, R. Piestun, and D. Psaltis, "Double-helix enhanced axial localization in STED nanoscopy," Opt. Express 21, 30984-30992 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  2. S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  3. S. R. P. Pavani and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express16(26), 22048–22057 (2008). [CrossRef] [PubMed]
  4. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A.106(9), 2995–2999 (2009). [CrossRef] [PubMed]
  5. T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett.24(14), 954–956 (1999). [CrossRef] [PubMed]
  6. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U. S. A.103(31), 11440–11445 (2006). [CrossRef] [PubMed]
  7. G. Donnert, J. Keller, C. A. Wurm, S. O. Rizzoli, V. Westphal, A. Schönle, R. Jahn, S. Jakobs, C. Eggeling, and S. W. Hell, “Two-color far-field fluorescence nanoscopy,” Biophys. J.92(8), L67–L69 (2007). [CrossRef] [PubMed]
  8. K. Y. Han, K. I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, and S. W. Hell, “Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light,” Nano Lett.9(9), 3323–3329 (2009). [CrossRef] [PubMed]
  9. T. J. Gould, D. Burke, J. Bewersdorf, and M. J. Booth, “Adaptive optics enables 3D STED microscopy in aberrating specimens,” Opt. Express20(19), 20998–21009 (2012). [CrossRef] [PubMed]
  10. B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett.8(5), 1309–1313 (2008). [CrossRef] [PubMed]
  11. D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43 (2009). [CrossRef] [PubMed]
  12. R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods5(6), 539–544 (2008). [CrossRef] [PubMed]
  13. T. J. Gould, J. R. Myers, and J. Bewersdorf, “Total internal reflection STED microscopy,” Opt. Express19(14), 13351–13357 (2011). [CrossRef] [PubMed]
  14. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science319(5864), 810–813 (2008). [CrossRef] [PubMed]
  15. M. Speidel, A. Jonás, and E.-L. Florin, “Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging,” Opt. Lett.28(2), 69–71 (2003). [CrossRef] [PubMed]
  16. M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods5(6), 527–529 (2008). [CrossRef] [PubMed]
  17. M. Badieirostami, M. D. Lew, M. A. Thompson, and W. E. Moerner, “Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane,” Appl. Phys. Lett.97(16), 161103 (2010). [CrossRef] [PubMed]
  18. G. Grover, S. R. P. Pavani, and R. Piestun, “Performance limits on three-dimensional particle localization in photon-limited microscopy,” Opt. Lett.35(19), 3306–3308 (2010). [CrossRef] [PubMed]
  19. S. R. P. Pavani and R. Piestun, “High-efficiency rotating point spread functions,” Opt. Express16(5), 3484–3489 (2008). [CrossRef] [PubMed]
  20. S. Quirin, S. R. P. Pavani, and R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. U. S. A.109(3), 675–679 (2012). [CrossRef] [PubMed]
  21. S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett.95(2), 021103 (2009). [CrossRef]
  22. R. T. Borlinghaus, “MRT letter: high speed scanning has the potential to increase fluorescence yield and to reduce photobleaching,” Microsc. Res. Tech.69(9), 689–692 (2006). [CrossRef] [PubMed]
  23. G. Donnert, C. Eggeling, and S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods4(1), 81–86 (2007). [CrossRef] [PubMed]
  24. A. Barsic, G. Grover, and R. Piestun, “Sparse reconstructions of overlapping three-dimensional point spread functions using overcomplete dictionaries,” arXiv:1308.6826 (2013).
  25. I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. Peterman, and G. J. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,” Nat. Methods10(9), 910–916 (2013). [CrossRef] [PubMed]
  26. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev.5(1), 81–101 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited