OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31082–31091

1D and 2D arrays of coupled photonic crystal cavities with a site-controlled quantum wire light source

C. Jarlov, K. A. Atlasov, L. Ferrier, M. Calic, P. Gallo, A. Rudra, B. Dwir, and E. Kapon  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 31082-31091 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (15971 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated experimentally 1D and 2D arrays of coupled L3 photonic crystal cavities. The optical modes of the coupled cavity arrays are fed by a site-controlled quantum wire light source. By performing photoluminescence measurements and relying on near-field calculation of the cavitiy modes, we evidence optical coupling between the cavities as well as supermode delocalization. In particular, for small cavity separations, fabrication induced disorder effects are shown to be negligible compared to optical coupling between cavities.

© 2013 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.5230) Optoelectronics : Photoluminescence
(230.4555) Optical devices : Coupled resonators
(050.5298) Diffraction and gratings : Photonic crystals
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: November 12, 2013
Revised Manuscript: November 29, 2013
Manuscript Accepted: November 29, 2013
Published: December 10, 2013

C. Jarlov, K. A. Atlasov, L. Ferrier, M. Calic, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, "1D and 2D arrays of coupled photonic crystal cavities with a site-controlled quantum wire light source," Opt. Express 21, 31082-31091 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Stajic, “The future of quantum information processing,” Science339, 1163 (2013). [CrossRef]
  2. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. OBrien, “Quantum computers,” Nature464, 45–53 (2010). [CrossRef]
  3. D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett.108, 093604 (2012). [CrossRef]
  4. M. Bajcsy, A. Majumdar, A. Rundquist, and J. Vukovi, “Photon blockade with a four-level quantum emitter coupled to a photonic-crystal nanocavity,” New J. Phys.15, 025014 (2013). [CrossRef]
  5. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett.78, 3221–3224 (1997). [CrossRef]
  6. S. Ritter, C. Nlleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mcke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature484, 195–200 (2012). [CrossRef]
  7. R. P. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys.21, 467–488 (1982). [CrossRef]
  8. J. I. Cirac and P. Zoller, “Goals and opportunities in quantum simulation,” Nat. Phys.8, 264–266 (2012). [CrossRef]
  9. M. Greiner, O. Mandel, T. Esslinger, T. W. Hnsch, and I. Bloch, “Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms,” Nature415, 39–44 (2002). [CrossRef]
  10. M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett.81, 2582–2585 (1998). [CrossRef]
  11. M. Karl, S. Li, T. Passow, W. L’offler, H. Kalt, and M. Hetterich, “Localized and delocalized modes in coupled optical micropillar cavities,” Opt. Express15, 8191–8196 (2007). [CrossRef]
  12. S. Michaelis de Vasconcellos, A. Calvar, A. Dousse, J. Suffczyski, N. Dupuis, A. Lematre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Spatial, spectral, and polarization properties of coupled micropillar cavities,” Appl. Phys. Lett.99, 101103 (2011). [CrossRef]
  13. S. Ishii, A. Nakagawa, and T. Baba, “Modal characteristics and bistability in twin microdisk photonic molecule lasers,” IEEE J. Quantum Electron.12, 71–77 (2006). [CrossRef]
  14. D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vučković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express15, 5550–5558 (2007). [CrossRef]
  15. K. A. Atlasov, K. F. Karlsson, A. Rudra, B. Dwir, and E. Kapon, “Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities,” Opt. Express16, 16255–16264 (2008). [CrossRef]
  16. A. R. A. Chalcraft, S. Lam, B. D. Jones, D. Szymanski, R. Oulton, A. C. T. Thijssen, M. S. Skolnick, D. M. Whittaker, T. F. Krauss, and A. M. Fox, “Mode structure of coupled l3 photonic crystal cavities,” Opt. Express19, 5670–5675 (2011). [CrossRef]
  17. A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vukovi, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B86, 045315 (2012). [CrossRef]
  18. R. Bose, T. Cai, G. S. Solomon, and E. Waks, “All-optical tuning of a quantum dot in a coupled cavity system,” Appl. Phys. Lett.100, 231107 (2012). [CrossRef]
  19. T. Cai, R. Bose, G. S. Solomon, and E. Waks, “Controlled coupling of photonic crystal cavities using photochromic tuning,” Appl. Phys. Lett.102, 141118 (2013). [CrossRef]
  20. D. O’Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, “Coupled photonic crystalheterostructure nanocavities,” Opt. Express15, 1228–1233 (2007). [CrossRef]
  21. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-q coupled nanocavities,” Nat. Photonics2, 741–747 (2008). [CrossRef]
  22. A. Majumdar, A. Rundquist, M. Bajcsy, V. D. Dasika, S. R. Bank, and J. Vukovi, “Design and analysis of photonic crystal coupled cavity arrays for quantum simulation,” Phys. Rev. B86, 195312 (2012). [CrossRef]
  23. C. J. Matthews and R. Seviour, “Effects of disorder on the frequency and field of photonic-crystal cavity resonators,” Appl. Phys. B94, 381–388 (2009). [CrossRef]
  24. S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett.94, 151103 (2009). [CrossRef]
  25. K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express17, 18178–18183 (2009). [CrossRef]
  26. K. A. Atlasov, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Effect of sidewall passivation in BCl3/N2 inductively coupled plasma etching of two-dimensional GaAs photonic crystals,” J. Vac. Sci. Technol. B27, L21–L24 (2009). [CrossRef]
  27. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatre, J. Dreiser, and A. Imamolu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87, 021108 (2005). [CrossRef]
  28. K. A. Atlasov, A. Rudra, B. Dwir, and E. Kapon, “Large mode splitting and lasing in optimally coupled photonic-crystal microcavities,” Opt. Express19, 2619–2625 (2011). [CrossRef] [PubMed]
  29. U. Bockelmann and G. Bastard, “Interband optical transitions in semiconductor quantum wires: selection rules and absorption spectra,” EPL15, 215 (1991). [CrossRef]
  30. M. Lomascolo, P. Ciccarese, R. Cingolani, R. Rinaldi, and F. K. Reinhart, “Free versus localized exciton in GaAs v-shaped quantum wires,” J. Appl. Phys.83, 302–305 (1998). [CrossRef]
  31. J. J. Glennon, R. Tang, W. E. Buhro, R. A. Loomis, D. A. Bussian, H. Htoon, and V. I. Klimov, “Exciton localization and migration in individual CdSe quantum wires at low temperatures,” Phys. Rev. B80, 081303 (2009). [CrossRef]
  32. D. Marcuse, “Coupled mode theory of optical resonant cavities,” IEEE J. Quantum Electron.21, 1819–1826 (1985). [CrossRef]
  33. H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE79, 1505–1518 (1991). [CrossRef]
  34. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  35. M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106, 227402 (2011). [CrossRef] [PubMed]
  36. E. Gallardo, L. J. Martínez, A. K. Nowak, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. García, and P. A. Postigo, “Emission polarization control in semiconductor quantum dots coupled to a photonic crystal microcavity,” Opt. Express18, 13301–13308 (2010). [CrossRef] [PubMed]
  37. A. D. Greentree, C. Tahan, J. H. Cole, and C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys.2, 856–861 (2006). [CrossRef]
  38. M. J. Hartmann, F. G. S. L. Brando, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys.2, 849–855 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited