OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31166–31175

High-speed reconfigurable card-to-card optical interconnects based on hybrid free-space and multi-mode fiber propagations

Ke Wang, Ampalavanapillai Nirmalathas, Christina Lim, Efstratios Skafidas, and Kamal Alameh  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 31166-31175 (2013)
http://dx.doi.org/10.1364/OE.21.031166


View Full Text Article

Enhanced HTML    Acrobat PDF (2239 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, a high-speed reconfigurable card-to-card optical interconnect architecture based on hybrid free-space and multi-mode fiber (MMF) propagation is proposed. The use of free-space signal transmission provides flexibility and reconfigurability and the MMF extends the achievable interconnection range. A printed-circuit-board (PCB) based integrated optical interconnect module is designed and developed and proof-of-concept demonstration experiments are carried out. Results show that 3 × 10 Gb/s reconfigurable optical interconnect is realized with ~12 cm free-space propagation and a 10 m MMF length. In addition, since air turbulence due to high temperature of electronic components and heat dissipation fans always exists in typical interconnect environments and it normally results in system performance degradation, its impact on the proposed reconfigurable optical interconnect scheme is also experimentally investigated. Results indicate that even with comparatively strong air turbulence, 3 × 10 Gb/s optical interconnects with flexibility can still be achieved and the power penalty is <0.7 dB.

© 2013 Optical Society of America

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(200.2605) Optics in computing : Free-space optical communication

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 26, 2013
Revised Manuscript: November 27, 2013
Manuscript Accepted: November 30, 2013
Published: December 10, 2013

Citation
Ke Wang, Ampalavanapillai Nirmalathas, Christina Lim, Efstratios Skafidas, and Kamal Alameh, "High-speed reconfigurable card-to-card optical interconnects based on hybrid free-space and multi-mode fiber propagations," Opt. Express 21, 31166-31175 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-31166


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. C. Chen, “Challenges for silicon technology scaling in the nanoscale era,” in Proceedings of European Solid State Device Research Conference (ESSDERC, Athens, Greece, 2009), pp. 1–7.
  2. J. S. Walling and D. Allstot, “CMOS powers toward system-on-chip integration,” IEEE Microw. Mag.12(1), 6–16 (2011). [CrossRef]
  3. V. S. Nandakumar and M. Marek-Sadowska, “A low energy network-on-chip fabric for 3-D multi-core architectures,” IEEE Emerging and Sel. Topics in Circuits and Systems2, 266–277 (2012).
  4. R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd, “Power7: IBM’s next-generation server processor,” IEEE Micro30(2), 7–15 (2010). [CrossRef]
  5. S. Kamil, L. Oliker, A. Pinar, and J. M. Shalf, “Communication requirements and interconnect optimization for high-end scientific applications,” IEEE Trans. Parallel Distrib. Syst.21(2), 188–202 (2010). [CrossRef]
  6. A. Vahdat, M. Al-Fares, N. Farrington, R. N. Mysore, G. D. Porter, and S. Radhakrishnan, “Scale-out networking in the data center,” IEEE Micro30(4), 29–41 (2010). [CrossRef]
  7. N. Ilyadis, “The evolution of next-generation data center networks for high capacity computing,” in Proceedings of Symposium on VLSI Circuits (Honolulu, Hawaii, 2012), pp. 1–5. [CrossRef]
  8. M. A. Taubenblatt, “Optical interconnects for high performance computing,” J. Lightwave Technol.30(4), 448–457 (2012). [CrossRef]
  9. M. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron.17(2), 333–346 (2011). [CrossRef]
  10. K. Kim, “Electronics and photonics convergence on Si (CMOS) platform,” in Proceedings of 17th Opto-Electronics and Communications Conference (OECC, Busan, Korea, 2012), pp. 1–4. [CrossRef]
  11. A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritther, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop.49(4.5), 755–775 (2005). [CrossRef]
  12. P. K. Pepeljugoski, F. E. Doany, D. M. Kuchta, L. Schares, C. L. Schow, M. B. Ritter, and J. A. Kash, “Data center and high performance computing interconnects for 100 Gb/s and beyond,” in Proceedings of Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (OFC/NFOEC, Anaheim, CA, 2007), pp. 1–3. [CrossRef]
  13. L. A. Buckman-Windover, J. N. Simon, S. A. Rosenau, K. S. Giboney, G. M. Flower, L. W. Mirkarimi, A. Grot, B. Law, C.-K. Lin, A. Tandon, R. W. Gruhlke, H. Xia, G. Rankin, M. R. T. Tan, and D. W. Dolfi, “Parallel optical interconnects >100 Gb/s,” J. Lightwave Technol.22(9), 2055–2063 (2004). [CrossRef]
  14. F. E. Doany, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. Baks, C. Jahnes, F. Libsch, and C. L. Schow, “Terabit/sec VCSEL-based parallel optical module based on holey CMOS transceiver IC,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC, Los Angeles, CA, 2012), pp. PDP5D.9.
  15. R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag.31(4), 759–767 (2008). [CrossRef]
  16. C. L. Schow, F. E. Doany, C. W. Baks, Y. H. Kwark, D. M. Kuchta, and J. A. Kash, “A single-chip CMOS-based parallel optical transceiver capable of 240-Gb/s bidirectional data rates,” J. Lightwave Technol.27(7), 915–929 (2009). [CrossRef]
  17. F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. A. Budd, F. R. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Jeffrey, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag.32(2), 345–359 (2009). [CrossRef]
  18. C. J. Henderson, D. G. Leyva, and T. D. Wilkinson, “Free space adaptive optical interconnect at 1.25 Gb/s with beam steering using a ferroelectric liquid-crystal SLM,” J. Lightwave Technol.24(5), 1989–1997 (2006). [CrossRef]
  19. N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE88(6), 829–837 (2000). [CrossRef]
  20. M. Aljada, K. E. Alameh, Y. T. Lee, and I. S. Chung, “High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors,” Opt. Express14(15), 6823–6836 (2006). [CrossRef] [PubMed]
  21. K. Wang, A. Nirmalathas, C. Lim, E. Skafidas, and K. Alameh, “Experimental demonstration of high-speed free-space reconfigurable card-to-card optical interconnects,” Opt. Express21(3), 2850–2861 (2013). [CrossRef] [PubMed]
  22. K. Wang, A. Nirmalathas, C. Lim, E. Skafidas, and K. Alameh, “Experimental demonstration of 3×3 10 Gb/s reconfigurable free space optical card-to-card interconnects,” Opt. Lett.37(13), 2553–2555 (2012). [CrossRef] [PubMed]
  23. K. Wang, A. Nirmalathas, C. Lim, E. Skafidas, and K. Alameh, “Experimental demonstration of reconfigurable optical interconnect based on hybrid free-space and multi-mode fiber propagation,” in Proceedings of Optical Fiber Communication Conference and Exposition and National Fiber Optic Engineers Conference (OFC/NFOEC, Anaheim, CA, 2013), pp. OTh1A.6. [CrossRef]
  24. R. Rachmani and S. Arnon, “Server backplane with optical wavelength diversity links,” J. Lightwave Technol.30(9), 1359–1365 (2012). [CrossRef]
  25. R. Rachmani, A. Zilberman, and S. Arnon, “Computer backplane with free space optical links: air turbulence effects,” J. Lightwave Technol.30(1), 156–162 (2012). [CrossRef]
  26. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, SPIE Optical Engineering Press: Bellingham, Washington, 1998.
  27. S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, “Understanding the performance of free-space optics,” J. Opt. Netw.2, 178–200 (2003).
  28. H. G. Sandalidis, T. A. Tsiftsis, G. K. Karagiannidis, and M. Uysal, “BER performance of FSO links over strong atmospheric turbulence channels with pointing errors,” IEEE Commun. Lett.12(1), 44–46 (2008). [CrossRef]
  29. K. Wang, A. Nirmalathas, C. Lim, E. Skafidas, and K. Alameh, “High-speed reconfigurable free-space card-to-card optical interconnects,” IEEE Photonics Journal4(5), 1407–1419 (2012). [CrossRef]
  30. T. Mizuochi, Y. Miyata, K. Kubo, T. Sugihara, K. Onohara, and H. Yoshida, “Progress in soft-decision FEC,” in Proceedings of Optical Fiber Communication Conference and Exposition and National Fiber Optic Engineers Conference (OFC/NFOEC, Los Angeles, CA, 2011), pp. 1–3.
  31. T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Sel. Top. Quantum Electron.12(4), 544–554 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited