OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31282–31292

Shack-Hartmann wavefront sensing using interferometric focusing of light onto guide-stars

Xiaodong Tao, Ziah Dean, Christopher Chien, Oscar Azucena, Dare Bodington, and Joel Kubby  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 31282-31292 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1232 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical microscopy provides noninvasive imaging of biological tissues at subcellular level. The optical aberrations induced by the inhomogeneous refractive index of biological samples limits the resolution and can decrease the penetration depth. To compensate refractive aberrations, adaptive optics with Shack-Hartmann wavefront sensing has been used in microscopes. Wavefront measurement requires light from a guide-star inside of the sample. The scattering effect limits the intensity of the guide-star, hence reducing the signal to noise ratio of the wavefront measurement. In this paper, we demonstrate the use of interferometric focusing of excitation light onto a guide-star embedded deeply in tissue to increase its fluorescent intensity, thus overcoming the excitation signal loss caused by scattering. With interferometric focusing, we more than doubled the signal to noise ratio of the laser guide-star through scattering tissue as well as potentially extend the imaging depth through using AO microscopy.

© 2013 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.2520) Microscopy : Fluorescence microscopy
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 27, 2013
Revised Manuscript: December 6, 2013
Manuscript Accepted: December 7, 2013
Published: December 11, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Xiaodong Tao, Ziah Dean, Christopher Chien, Oscar Azucena, Dare Bodington, and Joel Kubby, "Shack-Hartmann wavefront sensing using interferometric focusing of light onto guide-stars," Opt. Express 21, 31282-31292 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Kubby, Adaptive Optics for Biological Imaging, (CRC Press, 2013).
  2. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett.34(16), 2495–2497 (2009). [CrossRef] [PubMed]
  3. P. Marsh, D. Burns, and J. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express11(10), 1123–1130 (2003). [CrossRef] [PubMed]
  4. O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett.25(1), 52–54 (2000). [CrossRef] [PubMed]
  5. X. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics confocal microscopy using direct wavefront sensing,” Opt. Lett.36(7), 1062–1064 (2011). [CrossRef] [PubMed]
  6. X. Tao, J. Crest, S. Kotadia, O. Azucena, D. C. Chen, W. Sullivan, and J. Kubby, “Live imaging using adaptive optics with fluorescent protein guide-stars,” Opt. Express20(14), 15969–15982 (2012). [CrossRef] [PubMed]
  7. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006). [CrossRef] [PubMed]
  8. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010). [CrossRef] [PubMed]
  9. M. J. Booth, M. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A.99(9), 5788–5792 (2002). [CrossRef] [PubMed]
  10. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of Light Scattering from Biological Cells Relevant to Noninvasive Optical-Tissue Diagnostics,” Appl. Opt.37(16), 3586–3593 (1998). [CrossRef] [PubMed]
  11. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008). [CrossRef] [PubMed]
  12. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics5(3), 154–157 (2011). [CrossRef] [PubMed]
  13. K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics6(10), 657–661 (2012). [CrossRef] [PubMed]
  14. B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics7(4), 300–305 (2013). [CrossRef] [PubMed]
  15. I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express16(1), 67–80 (2008). [CrossRef] [PubMed]
  16. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4(5), 320–322 (2010). [CrossRef]
  17. D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express20(5), 4840–4849 (2012). [CrossRef] [PubMed]
  18. M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express19(4), 2989–2995 (2011). [CrossRef] [PubMed]
  19. R. Fiolka, K. Si, and M. Cui, “Parallel wavefront measurements in ultrasound pulse guided digital phase conjugation,” Opt. Express20(22), 24827–24834 (2012). [CrossRef] [PubMed]
  20. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express20(2), 1733–1740 (2012). [CrossRef] [PubMed]
  21. C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express20(14), 15086–15092 (2012). [CrossRef] [PubMed]
  22. M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, New York, 1999).
  23. E. Chaigneau, A. J. Wright, S. P. Poland, J. M. Girkin, and R. A. Silver, “Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue,” Opt. Express19(23), 22755–22774 (2011). [CrossRef] [PubMed]
  24. E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commercial twisted nematic LCDs,” Appl. Opt.47(12), 2076–2081 (2008). [CrossRef] [PubMed]
  25. D. Malacara, Optical Shop Testing, (Wiley, New York, 2007).
  26. M. A. Schofield and Y. Zhu, “Fast phase unwrapping algorithm for interferometric applications,” Opt. Lett.28(14), 1194–1196 (2003). [CrossRef] [PubMed]
  27. I. Vellekoop and C. Aegerter, “Focusing light through living tissue,” Proc. SPIE7554, 755430 (2010). [CrossRef]
  28. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010). [CrossRef] [PubMed]
  29. I. M. Vellekoop, “Controlling the Propagation of Light in Disordered Scattering Media,” PhD thesis, Univ. Twente (2008).
  30. J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications, (Wiley, 2006).
  31. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University Press, 1998).
  32. J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109(22), 8434–8439 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited