OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31293–31302

Nonlinear excitation power dependence of surface enhanced fluorescence from a nanostructured Ag film

Kun-Yu Tai, Ti-Li Lin, and Hung-Chih Kan  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 31293-31302 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1698 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the excitation power dependence of fluorescent emission from Cy3-tagged molecules separated from an Ag film prepatterned with arrays of nanostructures by a thin spacer. While the fluorescent intensities from both the patterned area and the flat Ag surfaces increase monotonically with the power of excitation light, the fluorescent contrast between them decreases with excitation power in a nonlinear fashion. We propose a simple theoretical model which includes basic properties of molecular fluorescence, the effect of near field enhancement from surface plasmon excited on the patterned structure, and the effect of enhancement of fluorescent emission rate and non-radiative decay rate. Our results agree qualitatively with the prediction of a model for which there is a larger enhancement of the excitation rate than that of the total decay rate of the excited molecule.

© 2013 Optical Society of America

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(240.6680) Optics at surfaces : Surface plasmons
(260.2510) Physical optics : Fluorescence
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: October 8, 2013
Revised Manuscript: December 2, 2013
Manuscript Accepted: December 3, 2013
Published: December 11, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Kun-Yu Tai, Ti-Li Lin, and Hung-Chih Kan, "Nonlinear excitation power dependence of surface enhanced fluorescence from a nanostructured Ag film," Opt. Express 21, 31293-31302 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008). [CrossRef]
  2. C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem.77(17), 338A–346A (2005). [CrossRef]
  3. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys.57(3), 783–826 (1985). [CrossRef]
  4. S.-H. Guo, S.-J. Tsai, H.-C. Kan, D.-H. Tsai, M. R. Zachariah, and R. J. Phaneuf, “The Effect of an Active Substrate on Nanoparticle-Enhanced Fluorescence,” Adv. Mater.20(8), 1424–1428 (2008). [CrossRef]
  5. S.-H. Guo, J. J. Heetderks, H.-C. Kan, and R. J. Phaneuf, “Enhanced fluorescence and near-field intensity for Ag nanowire/nanocolumn arrays: evidence for the role of surface plasmon standing waves,” Opt. Express16(22), 18417–18425 (2008). [CrossRef] [PubMed]
  6. G. Zirubuabts and W. L. Barnes, “Fluorescence enhancement through modified dye molecule absorption associated with localized surface plasmon resonance of metallic dimmers,” New J. Phys.10(10), 105002 (2008). [CrossRef]
  7. E. M. Hicks, O. Lyandres, W. P. Hall, S. Zou, M. R. Glucksburg, and R. P. Van Duyne, “Plasmonic Properties of Anchored Nanoparticles Fabricated by Reactive Ion Etching and Nanosphere Lithography,” J. Phys. Chem.111, 4116–4124 (2007).
  8. S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett.403(1-3), 62–67 (2005). [CrossRef]
  9. F. Jäckel, A. A. Kinkhabwala, and W. E. Moerner, “Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential,” Chem. Phys. Lett.446(4-6), 339–343 (2007). [CrossRef]
  10. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express17(5), 3741–3753 (2009). [CrossRef] [PubMed]
  11. Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays,” Nano Lett.8(7), 1923–1928 (2008). [CrossRef] [PubMed]
  12. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  13. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt.45(4), 661–699 (1998). [CrossRef]
  14. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem.298(1), 1–24 (2001). [CrossRef] [PubMed]
  15. S. K. Saikin, Y. Chu, D. Rappoport, K. B. Crozier, and A. A. Aspuru-Guzik, “Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates,” J. Phys. Chem. Lett.1(18), 2740–2746 (2010). [CrossRef]
  16. A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces,” Phys. Rev. Lett.106(8), 083003 (2011). [CrossRef] [PubMed]
  17. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009). [CrossRef]
  18. G. W. Ford and W. H. Weber, “Electromagnetic Interactions of Molecules with Metal Surfaces,” Phys. Rep.4, 197–287 (1984).
  19. H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett.85(25), 5312–5315 (2000). [CrossRef] [PubMed]
  20. T. Pistor, “Generalizing the TEMPEST FDTD Electro-magnetic Simulation Program,” UCB/ERL M97/52, EECS Department, UC Berkeley (1997).
  21. R. M. Amos and W. L. Barnes, “Modification of spontaneous emission lifttimes in the presence of corrugated metallic surfaces,” Phys. Rev. B59(11), 7708–7714 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited