OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31309–31317

Lead silicate microstructured optical fibres for electro-optical applications

Wen Qi Zhang, Sean Manning, Heike Ebendorff-Heidepriem, and Tanya M. Monro  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 31309-31317 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (986 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report progress towards the realization of optical modulators based on electro-optic effects in soft glass fibres. A hybrid fabrication procedure was developed for producing microstructured lead silicate glass fibres with internal electrodes. Electro-optical characterization confirms experimentally that the enhanced nonlinear properties and superior isolation between the optical field and the electrodes make these fibres an ideal candidate platform for efficient electro-optical devices.

© 2013 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(230.2090) Optical devices : Electro-optical devices
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 16, 2013
Revised Manuscript: November 27, 2013
Manuscript Accepted: December 2, 2013
Published: December 12, 2013

Wen Qi Zhang, Sean Manning, Heike Ebendorff-Heidepriem, and Tanya M. Monro, "Lead silicate microstructured optical fibres for electro-optical applications," Opt. Express 21, 31309-31317 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Österberg and W. Margulis, “Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber,” Opt. Lett.11, 516–518 (1986). [CrossRef]
  2. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett.16, 1732–1734 (1991). [CrossRef]
  3. J. Y. Leong, P. Petropoulos, S. Asimakis, H. Ebendorff-Heidepriem, R. C. Moore, K. Frampton, V. Finazzi, Xian Feng, J. H. V. Price, T. M. Monro, and D. J. Richardson, “A lead silicate holey fiber with γ= 1820 W−1km−1at 1550 nm,” in The Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference(2005), PDP22.
  4. P. G. Kazansky, A. Kamal, and P. S. J. Russell, “High second-order nonlinearities induced in lead silicate glass by electron-beam irradiation,” Opt. Lett.18, 693–695 (1993). [CrossRef]
  5. F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett.72, 3252–3254 (1998). [CrossRef]
  6. A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, “Induction and relaxation of optical second-order nonlinearity in tellurite glasses,” J. Appl. Phys.85, 2046–2051 (1999). [CrossRef]
  7. K. Tanaka, A. Narazaki, and K. Hirao, “Large optical second-order nonlinearity of poled WO3-TeO2 glass,” Opt. Lett.25, 251–253 (2000). [CrossRef]
  8. Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett.84, 4935–4937 (2004). [CrossRef]
  9. R. Jing, Y. Guang, Z. Huidan, C. Guorong, K. Tanaka, K. Fujita, S. Murai, and Y. Tsujiie, “Second-harmonic generation in thermally poled chalcohalide glass,” Opt. Lett.31, 3492–3494 (2006). [CrossRef] [PubMed]
  10. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36, 467–495 (2006). [CrossRef]
  11. D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett.37, 107–108 (2001). [CrossRef]
  12. T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, “Broad-band second-harmonic generation in holey optical fibers,” Photonics Technol. Lett.13, 981–983 (2001). [CrossRef]
  13. G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  14. X. Feng, G. Ponzo, F. Poletti, A. Camerlingo, F. Parmigiani, M. Petrovich, P. Petropoulos, N. White, W. Loh, and D. Richardson, “A single-mode, high index-contrast, lead silicate glass fibre with high nonlinearity, broadband near-zero dispersion at telecommunication wavelengths,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), pp. 1–3. [CrossRef]
  15. M. Fokine, L. Kjellberg, P. Helander, N. Myrén, L. Norin, H. Olsson, N. Sjödin, and W. Margulius, “A fibre-based kerr switch and modulator,” in 30th European Conference on Optical Communications (ECOC2004), Stockholm, Sweden (2004).
  16. M. Malmström, O. Tarasenko, and W. Margulis, “Pulse selection at 1MHz with electro optic fiber switch,” Opt. Express20, 9465–9470 (2012). [CrossRef]
  17. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009). [CrossRef] [PubMed]
  18. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15, 15086–15092, (2007). [CrossRef] [PubMed]
  19. M. Fokine, L. E. Nilsson, Å. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber mach-zehnder interferometer for electro-optic switching,” Opt. Lett.27, 1643–1645 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited