OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31347–31366

Modeling and evaluating the performance of Brillouin distributed optical fiber sensors

Marcelo A. Soto and Luc Thévenaz  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 31347-31366 (2013)
http://dx.doi.org/10.1364/OE.21.031347


View Full Text Article

Enhanced HTML    Acrobat PDF (1238 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A thorough analysis of the key factors impacting on the performance of Brillouin distributed optical fiber sensors is presented. An analytical expression is derived to estimate the error on the determination of the Brillouin peak gain frequency, based for the first time on real experimental conditions. This expression is experimentally validated, and describes how this frequency uncertainty depends on measurement parameters, such as Brillouin gain linewidth, frequency scanning step and signal-to-noise ratio. Based on the model leading to this expression and considering the limitations imposed by nonlinear effects and pump depletion, a figure-of-merit is proposed to fairly compare the performance of Brillouin distributed sensing systems. This figure-of-merit offers to the research community and to potential users the possibility to evaluate with an objective metric the real performance gain resulting from any proposed configuration.

© 2013 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Sensors

History
Original Manuscript: November 5, 2013
Revised Manuscript: December 6, 2013
Manuscript Accepted: December 8, 2013
Published: December 12, 2013

Citation
Marcelo A. Soto and Luc Thévenaz, "Modeling and evaluating the performance of Brillouin distributed optical fiber sensors," Opt. Express 21, 31347-31366 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-31347


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995). [CrossRef]
  2. K. Hotate, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron.E83-C(3), 405–411 (2000).
  3. X. Bao, A. Brown, M. Demerchant, and J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett.24(8), 510–512 (1999). [CrossRef] [PubMed]
  4. K. Kishida and C.-H. Li, “Pulse pre-pump-BOTDA technology for new generation of distributed strain measuring system,” in Proc. Structural Health Monitoring and Intelligent Infrastructure (Taylor and Francis, 2006), pp. 471–477.
  5. A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol.25(1), 381–386 (2007). [CrossRef]
  6. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express16(26), 21616–21625 (2008). [CrossRef] [PubMed]
  7. Y. Dong, X. Bao, and W. Li, “Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor,” Appl. Opt.48(22), 4297–4301 (2009). [CrossRef] [PubMed]
  8. Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt.51(9), 1229–1235 (2012). [CrossRef] [PubMed]
  9. S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thévenaz, “High spatial and spectral resolution long-range sensing using Brillouin echoes,” J. Lightwave Technol.28(20), 2993–3003 (2010). [CrossRef]
  10. K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol.28(14), 2062–2067 (2010). [CrossRef]
  11. Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett.36(2), 277–279 (2011). [CrossRef] [PubMed]
  12. Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” J. Lightwave Tech.30(8), 1161–1167 (2012). [CrossRef]
  13. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B22(6), 1321–1324 (2005). [CrossRef]
  14. F. Rodriguez-Barrios, S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castanon, L. Thévenaz, and M. Gonzalez-Herraez, “Distributed Brillouin fiber sensor assisted by first-order Raman amplification,” J. Lightwave Technol.28(15), 2162–2172 (2010). [CrossRef]
  15. S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express18(18), 18769–18778 (2010). [CrossRef] [PubMed]
  16. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express19(5), 4444–4457 (2011). [CrossRef] [PubMed]
  17. X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. González-Herráez, “Raman-assisted Brillouin distributed temperature sensor over 100 km featuring 2 meter resolution and 1.2°C uncertainty,” J. Lightwave Technol.30(8), 1060–1065 (2012). [CrossRef]
  18. X. Angulo-Vinuesa, S. Martin-Lopez, P. Corredera, and M. González-Herraez, “Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km,” Opt. Express20(11), 12147–12154 (2012). [CrossRef] [PubMed]
  19. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett.35(2), 259–261 (2010). [CrossRef] [PubMed]
  20. H. Liang, W. Li, N. Linze, L. Chen, and X. Bao, “High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses,” Opt. Lett.35(10), 1503–1505 (2010). [CrossRef] [PubMed]
  21. S. Le Floch, F. Sauser, M. A. Soto, and L. Thévenaz, “Time/frequency coding for Brillouin distributed sensors,” Proc. SPIE8421, 84211J (2012).
  22. M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar optical pulse coding for performance enhancement in BOTDA sensors,” Opt. Express21(14), 16390–16397 (2013). [CrossRef] [PubMed]
  23. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express18(14), 14878–14892 (2010). [CrossRef] [PubMed]
  24. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett.36(2), 232–234 (2011). [CrossRef] [PubMed]
  25. M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification,” Opt. Express20(7), 6860–6869 (2012). [CrossRef] [PubMed]
  26. S. Le Floch, F. Sauser, M. Llera, M. A. Soto, and L. Thévenaz, “Colour simplex coding for Brillouin distributed sensors,” Proc. SPIE8794, 879437 (2013).
  27. X.-H. Jia, Y.-J. Rao, K. Deng, Z.-X. Yang, L. Chang, C. Zhang, and Z.-L. Ran, “Experimental demonstration on 2.5-m spatial resolution and 1°C temperature uncertainty over long-distance BOTDA with combined Raman amplification and optical pulse coding,” IEEE Photonics Technol. Lett.23(7), 435–437 (2011). [CrossRef]
  28. M. Taki, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Study of Raman amplification in DPP-BOTDA sensing employing Simplex coding for sub-meter scale spatial resolution over long fiber distances,” Meas. Sci. Technol.24(9), 094018 (2013). [CrossRef]
  29. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technol. Lett.24(20), 1823–1826 (2012). [CrossRef]
  30. M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S.-H. Chin, J. D. Ania-Castañon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thevenaz, “Extending the real remoteness of long-range Brillouin optical time-domain fiber analyzers,” J. Lightwave Technol.32(1), 152–162 (2014). [CrossRef]
  31. P. H. Richter, “Estimating errors in least-squares fitting,” Telecommun. Data Acquisition Prog. Rep.42(122), 107–137 (1995).
  32. L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express21(12), 14017–14035 (2013). [CrossRef] [PubMed]
  33. S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE7753, 77539V (2011). [CrossRef]
  34. S. Diaz, S. Foaleng Mafang, M. Lopez-Amo, and L. Thevenaz, “A high-performance optical time-domain Brillouin distributed fiber sensor,” IEEE Sens. J.8(7), 1268–1272 (2008). [CrossRef]
  35. L. Thévenaz, S. Le Floch, D. Alasia, and J. Troger, “Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing,” Meas. Sci. Technol.15(8), 1519–1524 (2004). [CrossRef]
  36. J.-C. Beugnot, M. Tur, S. F. Mafang, and L. Thévenaz, “Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing,” Opt. Express19(8), 7381–7397 (2011). [CrossRef] [PubMed]
  37. X. Bao, D. J. Webb, and D. A. Jackson, “22-km distributed temperature sensor using Brillouin gain in an optical fiber,” Opt. Lett.18(7), 552–554 (1993). [CrossRef] [PubMed]
  38. X. Bao, D. J. Webb, and D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett.18(18), 1561–1563 (1993). [CrossRef] [PubMed]
  39. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol.13(7), 1340–1348 (1995). [CrossRef]
  40. L. Thevenaz, M. Nikles, A. Fellay, M. Facchini, and P. A. Robert, “Applications of distributed Brillouin fiber sensing,” in International Conference on Applied Optical Metrology (SPIE, 1998), pp. 374–381. [CrossRef]
  41. V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun.168(1-4), 95–102 (1999). [CrossRef]
  42. Y. Dong, L. Chen, and X. Bao, “System optimization of a long-range Brillouin-loss-based distributed fiber sensor,” Appl. Opt.49(27), 5020–5025 (2010). [CrossRef] [PubMed]
  43. X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE8421, 842127 (2012).
  44. Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng.51(12), 124402 (2012). [CrossRef]
  45. J. Hu, X. Zhang, Y. Yao, and X. Zhao, “A BOTDA with break interrogation function over 72 km sensing length,” Opt. Express21(1), 145–153 (2013). [CrossRef] [PubMed]
  46. X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, C.-X. Yuan, X.-D. Yan, J. Li, H. Wu, Y.-Y. Zhu, and F. Peng, “Distributed Raman amplification using ultra-long fiber laser with a ring cavity: characteristics and sensing application,” Opt. Express21(18), 21208–21217 (2013). [CrossRef] [PubMed]
  47. X.-H. Jia, Y.-J. Rao, C.-X. Yuan, J. Li, X.-D. Yan, Z.-N. Wang, W.-L. Zhang, H. Wu, Y.-Y. Zhu, and F. Peng, “Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping,” Opt. Express21(21), 24611–24619 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited