OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31375–31389

Detection of single nano-defects in photonic crystals between crossed polarizers

Jon Olav Grepstad, Peter Kaspar, Ib-Rune Johansen, Olav Solgaard, and Aasmund Sudbø  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 31375-31389 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (7172 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate, by simulations and experiments, the light scattering of small particles trapped in photonic crystal membranes supporting guided resonance modes. Our results show that, due to amplified Rayleigh small particle scattering, such membranes can be utilized to make a sensor that can detect single nano-particles. We have designed a biomolecule sensor that uses cross-polarized excitation and detection for increased sensitivity. Estimated using Rayleigh scattering theory and simulation results, the current fabricated sensor has a detection limit of 26 nm, corresponding to the size of a single virus. The sensor can potentially be made both cheap and compact, to facilitate use at point-of-care.

© 2013 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: October 25, 2013
Revised Manuscript: December 3, 2013
Manuscript Accepted: December 4, 2013
Published: December 12, 2013

Jon Olav Grepstad, Peter Kaspar, Ib-Rune Johansen, Olav Solgaard, and Aasmund Sudbø, "Detection of single nano-defects in photonic crystals between crossed polarizers," Opt. Express 21, 31375-31389 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Bohunicky and S. A. Mousa, “Biosensors: the new wave in cancer diagnosis,” Nanotechnol. Sci. Appl.4, 1–10 (2010). [PubMed]
  2. M. U. Ahmed, I. Saaem, P. C. Wu, and A. S. Brown, “Personalized diagnostics and biosensors: a review of the biology and technology needed for personalized medicine,” Crit. Rev. Biotechnol. (2013). [CrossRef] [PubMed]
  3. M. F. Pineda, L. L. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid specific and label-free detection of porcine rotavirus using photonic crystal biosensors,” IEEE Sens. J.9, 470–477 (2009). [CrossRef]
  4. D. Duval and L. M. Lechuga, “Breakthroughs in photonics 2012: 2012 breakthroughs in lab-on-a-chip and optical biosensors,” IEEE Photonics J.5, 0700906 (2013). [CrossRef]
  5. F. Vollmer and L. Yang, “Label-free detection with high-q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics37, 267–291 (2012).
  6. R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lammerhofer, “Integrated polymer-based mach-zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron.26, 3832–3837 (2011). [CrossRef]
  7. D. Duval, J. Osmond, S. Dante, C. Dominguez, and L. Lechuga, “Grating couplers integrated on mach-zehnder interferometric biosensors operating in the visible range,” IEEE Photonics J.5, 3700108 (2013). [CrossRef]
  8. M. Mancuso, J. M. Goddard, and D. Erickson, “Nanoporous polymer ring resonators for biosensing,” Opt. Express20, 245–255 (2012). [CrossRef] [PubMed]
  9. V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013). [CrossRef]
  10. S. Pal, P. M. Fauchet, and B. L. Miller, “1-d and 2-d photonic crystals as optical methods for amplifying biomolecular recognition,” Anal. Chem.84, 8900–8908 (2012). [PubMed]
  11. I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett.12, 1092–1095 (2012). [CrossRef] [PubMed]
  12. P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol.7, 379–382 (2012). [CrossRef] [PubMed]
  13. R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun.4, 2154 (2013). [PubMed]
  14. A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano6, 9989–9995 (2012). [CrossRef] [PubMed]
  15. A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969 (2010). [CrossRef]
  16. M. E. Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express18, 22702–22714 (2010). [CrossRef] [PubMed]
  17. J. O. Grepstad, P. Kaspar, O. Solgaard, I.-R. Johansen, and A. S. Sudbø, “Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application,” Opt. Express20, 7954–7965 (2012). [CrossRef] [PubMed]
  18. C. Ge, M. Lu, S. George, T. A. Flood, C. Wagner, J. Zheng, A. Pokhriyal, J. G. Eden, P. J. Hergenrother, and B. T. Cunningham, “External cavity laser biosensor,” Lab Chip13, 1247–1256 (2013). [CrossRef] [PubMed]
  19. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65, 235112 (2002). [CrossRef]
  20. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12, 1575–1582 (2004). [CrossRef] [PubMed]
  21. W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett.82, 1999–2001 (2003). [CrossRef]
  22. O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett.29, 2782–2784 (2004). [CrossRef] [PubMed]
  23. M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express17, 24224–24233 (2009). [CrossRef]
  24. J. O. Grepstad, P. Kaspar, O. Solgaard, I.-R. Johansen, and A. Sudbo, “Optical imaging system designed for biosensing using a photonic crystal membrane to detect nanoparticles,” in Imaging and Applied Optics Technical Papers (Optical Society of America, 2012), pp. IM4C.2.
  25. J. Voros, “The density and refractive index of adsorbing protein layers,” Biophys. J.87, 553–561 (2004). [CrossRef] [PubMed]
  26. Commercially available software, OptiFDTD 9.0, supplied by Optiwave, http://optiwave.com/ , visited 25 Oct. 2013.
  27. Commercially available software supplied by KJ Innovation, http://software.kjinnovation.com/GD-Calc.html , visited 25 Oct. 2013.
  28. J.-P. Berenger, “Numerical reflection from FDTD-PMLs: a comparison of the split PML with the unsplit and CFS PMLs,” IEEE Trans. Antennas Propag.50, 258–265 (2002). [CrossRef]
  29. J. O. Grepstad, M. Greve, B. Holst, I.-R. Johansen, O. Solgaard, and A. Sudbo, “Finite-size limitations on quality factor of guided resonance modes in 2d photonic crystals,” Opt. Express21, 23640–23654 (2013). [CrossRef] [PubMed]
  30. C. F. Bohren and D. R. Huffman, Absorbtion and Scattering of Light by Small Particles (John Wiley, 1998), Chap. 5. [CrossRef]
  31. J. O. Grepstad, M. Greve, T. Reisinger, and B. Holst, “Nano-structuring on free-standing, dielectric membranes using e-beam lithography,” J. Vac. Sci. Technol. B31, 06F402 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited