OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31402–31419

Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain

Wenjun Qiu, Peter T. Rakich, Heedeuk Shin, Hui Dong, Marin Soljačić, and Zheng Wang  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 31402-31419 (2013)
http://dx.doi.org/10.1364/OE.21.031402


View Full Text Article

Enhanced HTML    Acrobat PDF (1670 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a general framework of evaluating the Stimulated Brillouin Scattering (SBS) gain coefficient in optical waveguides via the overlap integral between optical and elastic eigen-modes. This full-vectorial formulation of SBS coupling rigorously accounts for the effects of both radiation pressure and electrostriction within micro- and nano-scale waveguides. We show that both contributions play a critical role in SBS coupling as modal confinement approaches the sub-wavelength scale. Through analysis of each contribution to the optical force, we show that spatial symmetry of the optical force dictates the selection rules of the excitable elastic modes. By applying this method to a rectangular silicon waveguide, we demonstrate how the optical force distribution and elastic modal profiles jointly determine the magnitude and scaling of SBS gains in both forward and backward SBS processes. We further apply this method to the study of intra- and inter-modal SBS processes, and demonstrate that the coupling between distinct optical modes are necessary to excite elastic modes with all possible symmetries. For example, we show that strong inter-polarization coupling can be achieved between the fundamental TE- and TM-like modes of a suspended silicon waveguide.

© 2013 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(220.4880) Optical design and fabrication : Optomechanics

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 12, 2013
Revised Manuscript: November 18, 2013
Manuscript Accepted: November 18, 2013
Published: December 12, 2013

Citation
Wenjun Qiu, Peter T. Rakich, Heedeuk Shin, Hui Dong, Marin Soljačić, and Zheng Wang, "Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain," Opt. Express 21, 31402-31419 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-31402


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Y. Chiao, C. H. Townes, and B. P. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett.12, 592–595 (1964). [CrossRef]
  2. P. Dainese, P. Russell, N. Joly, J. Knight, G. Wiederhecker, H. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-ghz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys.2, 388–392 (2006). [CrossRef]
  3. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics2, 1–59 (2010). [CrossRef]
  4. M. S. Kang, A. Nazarkin, A. Brenn, and P. S. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial raman oscillators,” Nat. Phys.5, 276–280 (2009). [CrossRef]
  5. R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express19, 8285–8290 (2011). [CrossRef] [PubMed]
  6. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at x-band (11-ghz) rates,” Phys. Rev. Lett.102, 113601 (2009). [CrossRef] [PubMed]
  7. A. Byrnes, R. Pant, E. Li, D. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express20, 18845–18854 (2012). [CrossRef]
  8. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3, 91–94 (2009). [CrossRef]
  9. M. S. Kang, A. Butsch, and P. S. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics5, 549–553 (2011). [CrossRef]
  10. C. G. Poulton, R. Pant, A. Byrnes, S. Fan, M. J. Steel, and B. J. Eggleton, “Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides,” Opt. Express20, 21235–21246 (2012). [CrossRef] [PubMed]
  11. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318, 1748–1750 (2007). [CrossRef] [PubMed]
  12. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902 (2005). [CrossRef] [PubMed]
  13. K. Y. Song, M. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express13, 82–88 (2005). [CrossRef] [PubMed]
  14. K. Y. Song, K. S. Abedin, K. Hotate, M. G. Herráez, and L. Thévenaz, “Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber,” Opt. Express14, 5860–5865 (2006). [CrossRef] [PubMed]
  15. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband sbs slow-light systems,” Opt. Express16, 2764–2777 (2008). [CrossRef] [PubMed]
  16. R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett.37, 969–971 (2012). [CrossRef] [PubMed]
  17. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett.15, 1038–1040 (1990). [CrossRef] [PubMed]
  18. A. Schliesser, R. Riviere, G. Anetsberger, O Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys.4, 415–419 (2008). [CrossRef]
  19. G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8, 203–207 (2012). [CrossRef]
  20. W. C. Jiang, X. Lu, J. Zhang, and Q. Lin, “High-frequency silicon optomechanical oscillator with an ultralow threshold,” Opt. Express20, 15991–15996 (2012). [CrossRef] [PubMed]
  21. H. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW Brillouin laser,” Appl. Phys. Lett.28, 608–609 (1976). [CrossRef]
  22. I. V. Kabakova, R. Pant, D. Choi, S. Debbarma, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Narrow linewidth Brillouin laser based on chalcogenide photonic chip,” Opt. Lett.38, 3208–3211 (2013). [CrossRef] [PubMed]
  23. Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev.137, A1787–A1805 (1965). [CrossRef]
  24. R. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2009).
  25. G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).
  26. J. Botineau, E. Picholle, and D. Bahloul, “Effective stimulated Brillouin gain in singlemode optical fibres,” Electron. Lett.31, 2032–2034 (1995). [CrossRef]
  27. J. Wang, Y. Zhu, R. Zhang, and D. J. Gauthier, “FSBS resonances observed in a standard highly nonlinear fiber,” Opt. Express19, 5339–5349 (2011). [CrossRef] [PubMed]
  28. A. H. McCurdy, “Modeling of stimulated Brillouin scattering in optical fibers with arbitrary radial index profile,” J. Lightwave Technol.23, 3509 (2005). [CrossRef]
  29. X. Huang and S. Fan, “Complete all-optical silica fiber isolator via stimulated Brillouin scattering,” J. Lightwave Technol.29, 2267–2275 (2011). [CrossRef]
  30. M. S. Kang, A. Brenn, and P. S. J. Russell, “All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber,” Phys. Rev. Lett.105, 153901 (2010). [CrossRef]
  31. P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X2, 011008 (2012). [CrossRef]
  32. H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun.4, 1944 (2013). [CrossRef] [PubMed]
  33. R. Van Laer, D. Van Thourhout, and R. Baets, “Strong stimulated Brillouin scattering in an on-chip silicon slot waveguide,” in CLEO: Science and Innovations, San Jose, CA, 9–14 June 2013.
  34. P. T. Rakich, M. A. Popovi, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics1, 658–665 (2007). [CrossRef]
  35. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics1, 416–422 (2007). [CrossRef]
  36. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science321, 1172–1176 (2008). [CrossRef] [PubMed]
  37. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462, 78–82 (2009). [CrossRef] [PubMed]
  38. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature462, 633–636 (2009). [CrossRef] [PubMed]
  39. M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and-losses of localized optical andmechanical modes in optomechanicalcrystals,” Opt. Express17, 20078–20098 (2009). [CrossRef] [PubMed]
  40. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics3, 464–468 (2009). [CrossRef]
  41. J. Roels, I. D. Vlaminck, L. Lagae, B. Maes, D. V. Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol.4, 510–513 (2009). [CrossRef] [PubMed]
  42. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics4, 236–242 (2010). [CrossRef]
  43. D. Royer and E. Dieulesaint, Elastic Waves in Solids I: Free and Guided Propagation (Springer, 2000).
  44. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3, 91–94 (2008). [CrossRef]
  45. P. T. Rakich, P. Davids, and Z. Wang, “Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces,” Opt. Express18, 14439–14453 (2010). [CrossRef] [PubMed]
  46. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett.30, 3042–3044 (2005). [CrossRef] [PubMed]
  47. P. T. Rakich, Z. Wang, and P. Davids, “Scaling of optical forces in dielectric waveguides: rigorous connection between radiation pressure and dispersion,” Opt. Lett.36, 217–219 (2011). [CrossRef] [PubMed]
  48. W. Qiu, P. Rakich, M. Soljacic, and Z. Wang, “Stimulated Brillouin scattering in slow light waveguides,” arXiv1210.0738 (2012).
  49. S. Chandorkar, M. Agarwal, R. Melamud, R. Candler, K. Goodson, and T. Kenny, “Limits of quality factor in bulk-mode micromechanical resonators,” in IEEE 21st International Conference on Micro Electro Mechanical Systems, 2008. MEMS 2008 (2008), pp. 74–77.
  50. E. Dieulesaint and D. Royer, Elastic Wvaes in Solids II: Generation, Acousto-Optic Interaction, Applications (Springer, 2000).
  51. J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A8, 14–21 (1973). [CrossRef]
  52. P. W. Milonni and R. W. Boyd, “Momentum of light in a dielectric medium,” Adv. Opt. Photonics, 2, 519–553 (2010). [CrossRef]
  53. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E65, 066611 (2002). [CrossRef]
  54. M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the Youngs Modulus of silicon?,” J. Microelectromech. Syst.19, 229–238 (2010). [CrossRef]
  55. L. S. Hounsome, R. Jones, M. J. Shaw, and P. R. Briddon, “Photoelastic constants in diamond and silicon,” Phys. Status Solidi A203, 3088–3093 (2006). [CrossRef]
  56. R. Shelby, M. Levenson, and P. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B31, 5244–5252 (1985). [CrossRef]
  57. R. Shelby, M. Levenson, and P. Bayer, “Resolved forward Brillouin scattering in optical fibers,” Phys. Rev. Lett.54, 939–942 (1985). [CrossRef] [PubMed]
  58. R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett.37, 969–971 (2012). [CrossRef] [PubMed]
  59. A. Byrnes, R. Pant, E. Li, D.-Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express20, 18836–18845 (2012). [CrossRef] [PubMed]
  60. J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express20, 20170–20180 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited