OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31443–31452

Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG

Ryo Yasuhara, Hoshiteru Nozawa, Takagimi Yanagitani, Shinji Motokoshi, and Junji Kawanaka  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 31443-31452 (2013)
http://dx.doi.org/10.1364/OE.21.031443


View Full Text Article

Enhanced HTML    Acrobat PDF (1255 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The temperature dependence of the thermo-optic effects in single crystal and ceramic TGG were evaluated by using the Fizou interferometer method. The temperature dependence of the refractive index and thermal expansion are significantly improved at low temperature for both ceramics and single crystals. Our estimation using a figure of merit indicated that a TGG ceramics cooled to liquid nitrogen temperature can reduce thermal wave-front distortion by a factor of up to 4.7 with respect to that at 300 K, and can reduce thermal birefringence effects by up to a factor of 12 with respect to those at 300 K.

© 2013 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(160.3820) Materials : Magneto-optical materials

ToC Category:
Materials

History
Original Manuscript: August 20, 2013
Revised Manuscript: October 12, 2013
Manuscript Accepted: October 13, 2013
Published: December 12, 2013

Citation
Ryo Yasuhara, Hoshiteru Nozawa, Takagimi Yanagitani, Shinji Motokoshi, and Junji Kawanaka, "Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG," Opt. Express 21, 31443-31452 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-31443


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express15(18), 11255–11261 (2007). [CrossRef] [PubMed]
  2. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Measurement of magneto-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Review of Laser Engineering35(12), 806–810 (2007).
  3. E. A. Khazanov, “Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers,” Proc. SPIE4968, 115–126 (2003). [CrossRef]
  4. H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanagitani, Y. Nagata, and H. Kinoshita, “Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator,” Opt. Express19(16), 15181–15187 (2011). [CrossRef] [PubMed]
  5. R. Yasuhara and H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett.38(10), 1751–1753 (2013). [CrossRef] [PubMed]
  6. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, “Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wave-front sensor,” Appl. Opt.40(3), 366–374 (2001). [CrossRef] [PubMed]
  7. I. Ivanov, A. Bulkanov, E. Khazanov, I. Mukhin, O. Palashov, V. Tsvetkov, and P. Popov, “Terbium gallium garnet for high average power Faraday isolators: modern aspects of growing and characterization,” in CLEO/Europe and EQEC 2009 Conference Digest (Optical Society of America, 2009), paper CE_P12.
  8. A. A. Kaminskii, H. J. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett.2(10), 489–492 (2005). [CrossRef]
  9. D. S. Zheleznov, A. V. Voitovich, L. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron.36(4), 383–388 (2006). [CrossRef]
  10. D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron.40(3), 276–281 (2010). [CrossRef]
  11. A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B28(6), 1409–1415 (2011). [CrossRef]
  12. D. S. Zheleznov, A. V. Starobor, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator with a disk-shaped magneto-optical element,” J. Opt. Soc. Am. B29(4), 786–792 (2012). [CrossRef]
  13. A. A. Jalali, J. Rybarsyk, and E. Rogers, “Thermal lensing analysis of TGG and its effect on beam quality,” Opt. Express21(11), 13741–13747 (2013). [CrossRef] [PubMed]
  14. http://www.shimadzu.com/products/opt/sk/oh80jt0000009xne.html
  15. J. D. Foster and L. M. Osterink, “Index of refraction and expansion thermal coefficients of Nd:YAG,” Appl. Opt.7(12), 2428–2429 (1968). [CrossRef] [PubMed]
  16. R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt.38(15), 3282–3284 (1999). [CrossRef] [PubMed]
  17. R. Yasuhara, H. Furuse, A. Iwamoto, J. Kawanaka, and T. Yanagitani, “Evaluation of thermo-optic characteristics of cryogenically cooled Yb:YAG ceramics,” Opt. Express20(28), 29531–29539 (2012). [CrossRef] [PubMed]
  18. U. Schlarb and B. Sugg, “Refractive index of terbium gallium garnet,” Phys. Status Solidi B182(2), K91–K93 (1994). [CrossRef]
  19. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007). [CrossRef]
  20. D. J. Steinberg, “The temperature independence of Grüneisen’s gamma at high temperature,” J. Appl. Phys.52(10), 6415 (1981). [CrossRef]
  21. G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B4(2), 592–609 (1971). [CrossRef]
  22. J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010). [CrossRef]
  23. R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, and T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett.33(15), 1711–1713 (2008). [CrossRef] [PubMed]
  24. S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett.37(12), 2175–2177 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited