OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31469–31482

Subwavelength multiple focal spots produced by tight focusing the patterned vector optical fields

Mengqiang Cai, Chenghou Tu, Huihui Zhang, Shengxia Qian, Kai Lou, Yongnan Li, and Hui-Tian Wang  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 31469-31482 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3593 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically and experimentally explored generation and regulation of subwavelength multiple focal spots produced by tight focusing patterned vector optical fields (PVOFs). We presented a modified Richard-Wolf diffraction integration method suitable for the tight focusing of the PVOFs. By tailoring the spatial geometry and the polarization distributions of the PVOFs, simulations show that the diverse spatial configurations of subwavelength multiple focal spots can be achieved. To verify our idea, we experimentally generated the theoretically calculated examples of femtosecond PVOFs, then tightly focused them on the surface of the crystalline silicon wafers, and finally characterized the morphologies of modified surfaces. The SEM (scanning electronic microscopy) images confirmed that the experimental results are in good agreement with the simulations. Based on the diverse controlling degrees of freedom of PVOFs, the resultant subwavelength focal fields are flexible and powerful in parallel processing, optical manipulation and so on.

© 2013 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.1960) Physical optics : Diffraction theory
(260.5430) Physical optics : Polarization
(320.2250) Ultrafast optics : Femtosecond phenomena
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Physical Optics

Original Manuscript: October 15, 2013
Revised Manuscript: December 3, 2013
Manuscript Accepted: December 5, 2013
Published: December 13, 2013

Mengqiang Cai, Chenghou Tu, Huihui Zhang, Shengxia Qian, Kai Lou, Yongnan Li, and Hui-Tian Wang, "Subwavelength multiple focal spots produced by tight focusing the patterned vector optical fields," Opt. Express 21, 31469-31482 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1, 1–57 (2009). [CrossRef]
  2. K. Kitamura, K. Sakai, and S. Noda, “Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam,” Opt. Express18, 4518–4525 (2010). [CrossRef] [PubMed]
  3. X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett.35, 3928–3930, (2010). [CrossRef] [PubMed]
  4. L. X. Yang, X. S. Xie, S. C. Wang, and J. Y. Zhou, “Minimized spot of annular radially polarized focusing beam,” Opt. Lett.38, 1331–1333 (2013). [CrossRef] [PubMed]
  5. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91, 233901 (2003). [CrossRef] [PubMed]
  6. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express10, 324–331 (2002). [CrossRef] [PubMed]
  7. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett.78, 4713–4716 (1997). [CrossRef]
  8. V. P. Kalosha and I. Golub, “Toward the subdiffraction focusing limit of optical superresolution,” Opt. Lett.32, 3540–3542 (2007). [CrossRef] [PubMed]
  9. H. Kang, B. H. Jia, and M. Gu, “Polarization characterization in the focal volume of high numerical aperture objectives,” Opt. Express18, 10813–10821 (2010). [CrossRef] [PubMed]
  10. H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2, 501–505 (2008). [CrossRef]
  11. X. L. Wang, J. P. Ding, J. Q. Qin, J. Chen, Y. X. Fan, and H. T. Wang, “Configurable three-dimensional optical cage generated from cylindrical vector beams,” Opt. Commun.282, 3421–3425 (2009). [CrossRef]
  12. Y. Q. Zhao, Q. Zhan, Y. L. Zhang, and Y. P. Li, “Creation of a three-dimensional optical chain for controllable particle delivery,” Opt. Lett.30, 848–850 (2005). [CrossRef] [PubMed]
  13. X. L. Wang, J. P. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett.32, 3549–3551 (2007). [CrossRef] [PubMed]
  14. K. Lou, S. X. Qian, X. L. Wang, Y. N. Li, B. Gu, C. H. Tu, and H. T. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express20, 120–127 (2011). [CrossRef]
  15. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett.106, 123901 (2011). [CrossRef] [PubMed]
  16. K. Lou, S. X. Qian, Z. C. Ren, C. H. Tu, Y. N. Li, and H. T. Wang., “Femtosecond Laser Processing by Using Patterned Vector Optical Fields,” Sci. Rep.3, 2281 (2013). [PubMed]
  17. M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express18, 22305–22313 (2010). [CrossRef] [PubMed]
  18. Z. Kuang, D. Liu, W. Perrie, S. P. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255, 6582–6588 (2009). [CrossRef]
  19. H. Lin, B. H. Jia, and M. Gu, “Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication,” Opt. Lett.36, 406–408 (2011). [CrossRef] [PubMed]
  20. X. Jia, T. Q. Jia, L. E. Ding, P. X. Xiong, L. Deng, Z. R. Sun, Z. G. Wang, J. R. Qiu, and Z. Z. Xu, “Complex periodic micro/nanostructures on 6H-SiC crystal induced by the interference of three femtosecond laser beams,” Opt. Lett.34, 788–790 (2009). [CrossRef] [PubMed]
  21. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interferenceof femtosecond pulses,” Appl. Phys. Lett.82, 2758–2760 (2003). [CrossRef]
  22. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express13, 9605–9611 (2005). [CrossRef] [PubMed]
  23. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A253, 358–379 (1959). [CrossRef]
  24. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7, 77–87 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited