OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31530–31539

Aberrations of flat lenses and aplanatic metasurfaces

Francesco Aieta, Patrice Genevet, Mikhail Kats, and Federico Capasso  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 31530-31539 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1589 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A study of optical aberrations for flat lenses based on phase discontinuities is reported. The wave aberration function and the analytical expression of the aberrations up to the 4th order are derived to describe the performance of both ideal and practical flat lenses. We find that aberration-free focusing is possible under axial illumination but off-axis aberrations appear when the excitation is not normal to the interface. An alternative design for an aplanatic metasurface on a curved substrate is proposed to focus light without coma and spherical aberrations.

© 2013 Optical Society of America

OCIS Codes
(080.1010) Geometric optics : Aberrations (global)
(080.3630) Geometric optics : Lenses
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: October 23, 2013
Manuscript Accepted: December 5, 2013
Published: December 13, 2013

Francesco Aieta, Patrice Genevet, Mikhail Kats, and Federico Capasso, "Aberrations of flat lenses and aplanatic metasurfaces," Opt. Express 21, 31530-31539 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials,” Metamaterials (Amst.)3(2), 100–112 (2009). [CrossRef]
  2. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011). [CrossRef] [PubMed]
  3. N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron.19(3), 4700423 (2013). [CrossRef]
  4. A. V. Zayats and S. Maier, Active Plasmonics and Tuneable Plasmonic Metamaterials (Wiley, 2013)
  5. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(6125), 1232009 (2013). [CrossRef] [PubMed]
  6. S. Q. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012). [CrossRef] [PubMed]
  7. C. Pfeiffer and A. Grbic, “Metamaterial huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett.110(19), 197401 (2013). [CrossRef] [PubMed]
  8. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003). [CrossRef] [PubMed]
  9. M. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, and F. Capasso, “Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy,” Proc. Natl. Acad. Sci. U.S.A.109(31), 12364–12368 (2012). [CrossRef]
  10. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley-Interscience, 2006).
  11. M. Agio and A. Alù, Optical Antennas (Cambridge, 2013)
  12. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012). [CrossRef] [PubMed]
  13. B. Memarzadeh and H. Mosallaei, “Array of planar plasmonic scatterers functioning as light concentrator,” Opt. Lett.36(13), 2569–2571 (2011). [CrossRef] [PubMed]
  14. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun.3, 1198 (2012). [CrossRef] [PubMed]
  15. M. Kang, T. Feng, H.-T. Wang, and J. Li, “Wave front engineering from an array of thin aperture antennas,” Opt. Express20(14), 15882–15890 (2012). [CrossRef] [PubMed]
  16. A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett.13(2), 829–834 (2013). [CrossRef] [PubMed]
  17. X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett.37(23), 4940–4942 (2012). [CrossRef] [PubMed]
  18. X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl.2(4), e72 (2013). [CrossRef]
  19. C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett.102(23), 231116 (2013). [CrossRef]
  20. F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett.12(3), 1702–1706 (2012). [CrossRef] [PubMed]
  21. S. K.-Y. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett.12(12), 6223–6229 (2012). [CrossRef] [PubMed]
  22. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science335(6067), 427 (2012). [CrossRef] [PubMed]
  23. S. Larouche and D. R. Smith, “Reconciliation of generalized refraction with diffraction theory,” Opt. Lett.37(12), 2391–2393 (2012). [CrossRef] [PubMed]
  24. Z. Wei, Y. Cao, X. Su, Z. Gong, Y. Long, and H. Li, “Highly efficient beam steering with a transparent metasurface,” Opt. Express21(9), 10739–10745 (2013). [CrossRef] [PubMed]
  25. P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012). [CrossRef]
  26. J. He, X. Wang, D. Hu, J. Ye, S. Feng, Q. Kan, and Y. Zhang, “Generation and evolution of the terahertz vortex beam,” Opt. Express21(17), 20230–20239 (2013). [CrossRef] [PubMed]
  27. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012). [CrossRef] [PubMed]
  28. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012). [CrossRef] [PubMed]
  29. B. Yang, W. M. Ye, X. D. Yuan, Z. H. Zhu, and C. Zeng, “Design of ultrathin plasmonic quarter-wave plate based on period coupling,” Opt. Lett.38(5), 679–681 (2013). [CrossRef] [PubMed]
  30. F. Zhou, Y. Liu, and W. Cai, “Plasmonic holographic imaging with V-shaped nanoantenna array,” Opt. Express21(4), 4348–4354 (2013). [CrossRef] [PubMed]
  31. H. Gross, Handbook of Optical Systems: Aberration Theory and Correction of Optical Systems (Wiley-VCH, 2007)
  32. M. Young, “Zone plates and their aberrations,” J. Opt. Soc. Am. A62(8), 972 (1972). [CrossRef]
  33. A. Maréchal, “Mechanical integrator for studying the distribution of light in the optical image,” J. Opt. Soc. Am.37, 403 (1947).
  34. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 2nd ed. (New York Pergamon,1999).
  35. M. V. R. K. Murty, “Spherical zone-plate diffraction grating,” J. Opt. Soc. Am.50(9), 923 (1960). [CrossRef]
  36. P. Artal, J. Santamaría, and J. Bescós, “Retrieval of wave aberration of human eyes from actual point-spread-function data,” J. Opt. Soc. Am. A5(8), 1201–1206 (1988). [CrossRef] [PubMed]
  37. M. Lombardo and G. Lombardo, “Wave aberration of human eyes and new descriptors of image optical quality and visual performance,” J. Cataract Refract. Surg.36(2), 313–331 (2010). [CrossRef] [PubMed]
  38. C. Roddier and F. Roddier, “Wave-front reconstruction from defocused images and the testing of ground-based optical telescopes,” J. Opt. Soc. Am. A10(11), 2277–2287 (1993). [CrossRef]
  39. W. Coene, G. Janssen, M. O. de Beek, and D. Van Dyck, “Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy,” Phys. Rev. Lett.69(26), 3743–3746 (1992). [CrossRef] [PubMed]
  40. F. Hosokawa, T. Tomita, M. Naruse, T. Honda, P. Hartel, and M. Haider, “A spherical aberration-corrected 200 kV TEM,” J. Electron Microsc. (Tokyo)52(1), 3–10 (2003). [CrossRef] [PubMed]
  41. R. Fischer, Optical System Design, 2nd ed. (McGraw-Hill Professional, 2008).
  42. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).
  43. E. Hecht, Optics, 4th (Wesley Publishing Company 2001).
  44. J. Tetienne, R. Blanchard, N. Yu, P. Genevet, M. A. Kats, J. A. Fan, T. Edamura, S. Furuta, M. Yamanishi, and F. Capasso, “Dipolar modeling and experimental demonstration of multi-beam plasmonic collimators,” New J. Phys.13(5), 053057 (2011). [CrossRef]
  45. J. J. W. Bruce and P. J. Giblin, Curves and Singularities: A Geometrical Introduction to Singularity Theory (Cambridge University, 1992).
  46. B. Kress and P. Meyrueis, Applied Digital Optics (Wiley, 2009)
  47. D. B. Murphy and M. W. Davidson, Fundamentals of Light Microscopy and Electronic Imaging (John Wiley & Sons, 2012).
  48. R. Kingslake and R. B. Johnson, Lens Design Fundamentals, 2nd ed. (Academic, 2009).
  49. L. S. Shively, An Introduction to Modern Geometry (John Wiley & Sons, Inc., 1953).
  50. F. Aieta, A. Kabiri, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Reflection and refraction of light from metasurfaces with phase discontinuities,” J. Nanophotonics6, 063532 (2012). [PubMed]
  51. P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B17, 2965–2969 (1999).
  52. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev.105(4), 1171–1196 (2005). [CrossRef] [PubMed]
  53. D. Radtke and U. D. Zeitner, “Laser-lithography on non-planar surfaces,” Opt. Express15(3), 1167–1174 (2007). [CrossRef] [PubMed]
  54. B. Päivänranta, M. Pudas, O. Pitkänen, K. Leinonen, M. Kuittinen, P.-Y. Baroni, T. Scharf, and H.-P. Herzig, “Liquid phase deposition of polymers on arbitrary shaped surfaces and their suitability for e-beam patterning,” Nanotechnology20(22), 225305 (2009). [CrossRef] [PubMed]
  55. E. J. Smythe, M. D. Dickey, G. M. Whitesides, and F. Capasso, “A Technique to transfer metallic nanoscale patterns to small and non-planar surfaces,” ACS Nano3(1), 59–65 (2009). [CrossRef] [PubMed]
  56. E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett.9(3), 1132–1138 (2009). [CrossRef] [PubMed]
  57. K. E. Paul, M. Prentiss, and G. M. Whitesides, “Patterning spherical surfaces at the two-hundred-nanometer scale using soft lithography,” Adv. Funct. Mater.13(4), 259–263 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited