OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31560–31566

Enhanced ultraviolet emission of MgZnO/ZnO multiple quantum wells light-emitting diode by p-type MgZnO electron blocking layer

Yong-Seok Choi, Jang-Won Kang, Byeong-Hyeok Kim, and Seong-Ju Park  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 31560-31566 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1026 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the effect of a p-type MgZnO electron blocking layer (EBL) on the optical and electrical properties of MgZnO/ZnO multiple quantum wells (MQWs) light-emitting diodes (LEDs). The p-type Mg0.15Zn0.85O EBL was introduced between the MQWs and p-type Mg0.1Zn0.9O layers. The p-type Mg0.15Zn0.85O EBL increased the ultraviolet emission by 111.2% at 60 mA and decreased the broad deep-level emission from ZnO LEDs. The calculated band structures and carrier distribution in ZnO LEDs show that p-type Mg0.15Zn0.85O EBL effectively suppresses the electron overflow from MQWs to p-type Mg0.1Zn0.9O and increases the hole concentration in the MQWs.

© 2013 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(230.0230) Optical devices : Optical devices
(230.3670) Optical devices : Light-emitting diodes

ToC Category:
Optical Devices

Original Manuscript: October 28, 2013
Revised Manuscript: November 30, 2013
Manuscript Accepted: November 30, 2013
Published: December 13, 2013

Yong-Seok Choi, Jang-Won Kang, Byeong-Hyeok Kim, and Seong-Ju Park, "Enhanced ultraviolet emission of MgZnO/ZnO multiple quantum wells light-emitting diode by p-type MgZnO electron blocking layer," Opt. Express 21, 31560-31566 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Watanabe, T. Taniguchi, and H. Kanda, “Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal,” Nat. Mater.3(6), 404–409 (2004). [CrossRef] [PubMed]
  2. Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazaki, and T. Mukai, “Phosphor-conversion white light emitting diode using InGaN near-ultraviolet chip,” Jpn. J. Appl. Phys.41(4A), L371–L373 (2002). [CrossRef]
  3. D. E. Sunstein, “A scatter communications link at ultraviolet frequencies,” Thesis, Massachusetts Institute of Technology, (1968).
  4. T. Nishida, N. Kobayashi, and T. Ban, “GaN-free transparent ultraviolet light-emitting diodes,” Appl. Phys. Lett.82(1), 1–3 (2003). [CrossRef]
  5. S. Shakya, K. H. Kim, and H. X. Jiang, “Enhanced light extraction in III-nitride ultraviolet photonic crystal light-emitting diodes,” Appl. Phys. Lett.85(1), 142–144 (2004). [CrossRef]
  6. J. P. Zhang, X. Hu, Y. Bilenko, J. Deng, A. Lunev, M. S. Shur, R. Gaska, M. Shatalov, J. W. Yang, and M. A. Khan, “AlGaN-based 280,” Appl. Phys. Lett.85(23), 5532–5534 (2004). [CrossRef]
  7. S. Chu, M. Olmedo, Z. Yang, J. Kong, and J. Liu, “Electrically pumped ultraviolet ZnO diode lasers on Si,” Appl. Phys. Lett.93(18), 181106 (2008). [CrossRef]
  8. C. Zhang, F. Zhang, T. Xia, N. Kumar, J. I. Hahm, J. Liu, Z. L. Wang, and J. Xu, “Low-threshold two-photon pumped ZnO nanowire lasers,” Opt. Express17(10), 7893–7900 (2009). [CrossRef] [PubMed]
  9. D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B80(1–3), 383–387 (2001). [CrossRef]
  10. D. K. Hwang, M. S. Oh, J. H. Lim, and S. J. Park, “ZnO thin films and light-emitting diodes,” J. Phys. D Appl. Phys.40(22), R387–R412 (2007). [CrossRef]
  11. Y. S. Choi, J. W. Kang, D. K. Hwang, and S. J. Park, “Recent advances in ZnO-based light-emitting diodes,” IEEE Trans. Electron. Dev.57(1), 26–41 (2010). [CrossRef]
  12. J. Z. Zhao, H. W. Liang, J. C. Sun, J. M. Bian, Q. J. Feng, L. Z. Hu, H. Q. Zhang, X. P. Liang, Y. M. Luo, and G. T. Du, “Electroluminescence from n-ZnO/p-ZnO:Sb homojunction light emitting diode on sapphire substrate with metal–organic precursors doped p-type ZnO layer grown by MOCVD technology,” J. Phys. D Appl. Phys.41(19), 195110 (2008). [CrossRef]
  13. Y. J. Zeng, Z. Z. Ye, Y. F. Lu, W. Z. Xu, L. P. Zhu, J. Y. Huang, H. P. He, and B. H. Zhao, “Plasma-free nitrogen doping and homojunction light-emitting diodes based on ZnO,” J. Phys. D Appl. Phys.41(16), 165104 (2008). [CrossRef]
  14. Y. S. Choi, J. W. Kang, B. H. Kim, D. K. Na, S. J. Lee, and S. J. Park, “Improved electroluminescence from ZnO light-emitting diodes by p-type MgZnO electron blocking layer,” Opt. Express21(10), 11698–11704 (2013). [CrossRef] [PubMed]
  15. M. Hansen, J. Piprek, P. M. Pattison, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Higher efficiency InGaN laser diodes with an improved quantum well capping configuration,” Appl. Phys. Lett.81(22), 4275–4277 (2002). [CrossRef]
  16. S. Grzanka, G. Franssen, G. Targowski, K. Krowicki, T. Suski, R. Czernecki, P. Perlin, and M. Leszczyński, “Role of the electron blocking layer in the low-temperature collapse of electroluminescence in nitride light-emitting diodes,” Appl. Phys. Lett.90(10), 103507 (2007). [CrossRef]
  17. Y. S. Choi, J. W. Kang, B. H. Kim, and S. J. Park, “Optical Properties of ZnO/MgZnO Multiple Quantum Wells Grown by Metallorganic Chemical Vapor Deposition,” ECS J. Solid State Sci. Technol.2(1), R21–R23 (2013). [CrossRef]
  18. Y. S. Choi, D. K. Hwang, B. J. Kwon, J. W. Kang, Y. H. Cho, and S. J. Park, “Effect of VI/II gas ratio on the epitaxial growth of ZnO films by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys.50(10), 105502 (2011). [CrossRef]
  19. Th. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag, “ZnMgO epilayers and ZnO–ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region,” Appl. Phys. Lett.84(26), 5359–5361 (2004). [CrossRef]
  20. M. X. Qiu, Z. Z. Ye, H. P. He, Y. Z. Zhang, X. Q. Gu, L. P. Zhu, and B. H. Zhao, “Effect of Mg content on structural, electrical, and optical properties of Li-doped Zn1−xMgxO thin films,” Appl. Phys. Lett.90(18), 182116 (2007). [CrossRef]
  21. A. A. Iliadis, R. D. Vispute, T. Venkatesan, and K. A. Jones, “Ohmic metallization technology for wide band-gap semiconductors,” Thin Solid Films420–421(1), 478–486 (2002). [CrossRef]
  22. K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett.97(1), 013501 (2010). [CrossRef]
  23. B. Lin, Z. Fu, and Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates,” Appl. Phys. Lett.79(7), 943–945 (2001). [CrossRef]
  24. A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Lavrinovich, Y. T. Rebane, D. V. Tarkhin, and Y. G. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors40(5), 605–610 (2006). [CrossRef]
  25. See http://www.semitech.us/products/SiLENSe/ for details on the software package.
  26. J. W. Mares, M. Falanga, A. V. Thompson, A. Osinsky, J. Q. Xie, B. Hertog, A. Dabiran, P. P. Chow, S. Karpov, and W. V. Schoenfeld, “Hybrid CdZnO/GaN quantum-well light emitting diodes,” J. Appl. Phys.104(9), 093107 (2008). [CrossRef]
  27. S. Heikman, S. Keller, Y. Wu, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Polarization effects in AlGaN/GaN and GaN/AlGaN/GaN heterostructures,” J. Appl. Phys.93(12), 10114–10118 (2003). [CrossRef]
  28. E. F. Schubert, “Electron-blocking layers” in Light-Emitting Diodes, 2nd ed. (Cambridge University, 2006), pp. 81–82.
  29. S. H. Han, D. Y. Lee, S. J. Lee, C. Y. Cho, M. K. Kwon, S. P. Lee, D. Y. Noh, D. J. Kim, Y. C. Kim, and S. J. Park, “Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett.94(23), 231123 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited