OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31567–31577

Double-graphene-layer terahertz laser: concept, characteristics, and comparison

Victor Ryzhii, Alexander A. Dubinov, Taiichi Otsuji, Vladimir Ya. Aleshkin, Maxim Ryzhii, and Michael Shur  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 31567-31577 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1243 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and analyze the concept of injection terahertz (THz) lasers based on double-graphene-layer (double-GL) structures utilizing the resonant radiative transitions between GLs. We calculate main characteristics of such double-GL lasers and compare them with the characteristics of the GL lasers with intra-GL interband transitions. We demonstrate that the double-GL THz lasers under consideration can operate in a wide range of THz frequencies and might exhibit advantages associated with the reduced Drude absorption, weaker temperature dependence, voltage tuning of the spectrum, and favorable injection conditions.

© 2013 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 28, 2013
Revised Manuscript: November 30, 2013
Manuscript Accepted: December 6, 2013
Published: December 13, 2013

Victor Ryzhii, Alexander A. Dubinov, Taiichi Otsuji, Vladimir Ya. Aleshkin, Maxim Ryzhii, and Michael Shur, "Double-graphene-layer terahertz laser: concept, characteristics, and comparison," Opt. Express 21, 31567-31577 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett.12, 1482–1485 (2012). [CrossRef] [PubMed]
  2. L. Britnell, R. V. Gorbachev, R. Jalil, B.D. Belle, F. Shedin, A. Mishenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science335, 947–950 (2012). [CrossRef] [PubMed]
  3. T. Georgiou, R. Jalil, B. D. Bellee, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Cholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Nonoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol.7, 100–103 (2013).
  4. L. Britnell, R. V. Gorbachev, A. K. Geim, L. A. Ponomarenko, A. Mishchenko, M. T. Greenaway, T. M. Fromhold, K. S. Novoselov, and L. Eaves, “Resonant tunneling and negative differential conductance in graphene transistors,” Nat. Commun.4, 1794–1799 (2013). [CrossRef]
  5. V. Ryzhii, T. Otsuji, M. Ryzhii, V. G. Leiman, S. O. Yurchenko, V. Mitin, and M. S. Shur, “Effect of plasma resonances on dynamic characteristics of double-graphene layer optical modulators,” J. Appl. Phys.112, 104507 (2012). [CrossRef]
  6. V. Ryzhii, T. Otsuji, M. Ryzhii, and M. S. Shur, “Double graphene-layer plasma resonances terahertz detector,” J. Phys. D Appl. Phys.45, 302001 (2012). [CrossRef]
  7. V. Ryzhii, A. Satou, T. Otsuji, M. Ryzhii, V. Mitin, and M. S. Shur, “Dynamic effects in double-graphene-layer structures with inter-layer resonant-tunneling negative differential conductivity,” J. Phys. D Appl. Phys.46, 315107 (2013). [CrossRef]
  8. V. Ryzhii, M. Ryzhii, V. Mitin, M. S. Shur, A. Satou, and T. Otsuji, “Terahertz photomixing using plasma resonances in double-graphene-layer structures,” J. Appl. Phys.113, 174506 (2013). [CrossRef]
  9. V. Ryzhii, M. Ryzhii, and T. Otsuji, “Negative dynamic conductivity of graphene with optical pumping,” J. Appl. Phys.101, 083114 (2007). [CrossRef]
  10. A. A. Dubinov, V. Ya. Aleshkin., M. Ryzhii, T. Otsuji, and V. Ryzhii, “Terahertz laser with optically pumped graphene layers and Fabry-Perot resonator,” Appl. Phys. Express2, 092301 (2009). [CrossRef]
  11. V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Ya. Aleshkin, “Feasibility of terahertz lasing in optically pumped expitaxial multiple graphene layer structures,” J. Appl. Phys.106, 084507 (2009). [CrossRef]
  12. V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys.107, 054505 (2010). [CrossRef]
  13. V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Toward the creation of terahertz graphene injection laser,” J. Appl. Phys.110, 094503 (2011). [CrossRef]
  14. S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, “Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature,” Phys. Rev. B85, 035443 (2012). [CrossRef]
  15. T. Watanabe, T. Fukushima, Y. Yabe, S. A. Boubanga-Tombet, A. Satou, A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, V. Ryzhii, and T. Otsuji, “The gain enhancement effect of surface plasmon-polaritons on terahertz stimulated emission in optically pumped monolayer graphene,” New J. Phys.15, 075003 (2013). [CrossRef]
  16. T. Otsuji, S. A. Boubanga Tombet, A. Satou, M. Ryzhii, and V. Ryzhii, “Terahertz-wave generation using graphene - toward new types of terahertz lasers,” IEEE J. Sel. Top. Quantum Electron.19, 8400209 (2013). [CrossRef]
  17. A. Tredicucci and M. S. Vitiello, “Device concepts for graphene-based terahertz photonics,” IEEE J. Sel. Top. Quantum Electron.20, 8500109 (2014).
  18. V. Ryzhii, A. A. Dubinov, V. Ya. Aleshkin, M. Ryzhii, and T. Otsuji, “Injection terahertz laser using the resonant inter-layer radiative transitions in double-graphene-layer structure,” Appl. Phys. Lett.103, 163507 (2013). [CrossRef]
  19. H. Kanaya, H. Shibayama, R. Sogabe, S. Suzuki, and M. Asada, “Fundamental oscillation up to 1.31 THz in resonant tunneling diodes with thin well and barriers”, Appl. Phys. Express5, 124101 (2012). [CrossRef]
  20. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics1, 517 (2007). [CrossRef]
  21. K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators, Appl. Phys. Lett.80, 3060 (2002). [CrossRef]
  22. M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. Linfield, “Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K,” Opt. Express16, 3242–3248 (2008). [CrossRef] [PubMed]
  23. R. M. Feenstra, D. Jena, and G. Gu, “Single-particle tunneling in doped graphene-insulator-graphene junctions,” J. Appl. Phys111, 043711 (2012). [CrossRef]
  24. F. T. Vasko, “Resonant and nondissipative tunneling in independently contacted graphene structures,” Phys. Rev. B87, 075424 (2013). [CrossRef]
  25. L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B56, 281–284 (2007). [CrossRef]
  26. L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B76, 153410 (2007). [CrossRef]
  27. F. Carosella, C. Ndebeka-Bandou, R. Ferreira, E. Dupont, K. Unterrainer, G. Strasser, A. Wacker, and G. Bastard, “Free carrier absorption in quantum cascade structures,” Phys. Rev. B85, 085310 (2012). [CrossRef]
  28. F. T. Vasko, V. V. Mitin, V. Ryzhii, and T. Otsuji, “Interplay of intra- and interband absorption in a disordered graphene,” Phys. Rev. B86, 235424 (2012) [CrossRef]
  29. F. T. Vasko and A. V. Kuznetsov, Electronic States and Optical Transitions in Semiconductor Heterostructures (Springer, 1999) [CrossRef]
  30. K. J. Ebeling, Integrated Optoelectronics: Waveguide Optics, Photonics, Semiconductors (Springer, 1993). [CrossRef]
  31. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 1964).
  32. D. M. Hoffman, G. L. Doll, and P. C. Eklund, “Optical properties of pyrolytic boron nitride in the energy range 0.05 – 10 eV,” Phys. Rev. B30, 6051–6056 (1984). [CrossRef]
  33. H. Shi, H. Pan, Y.-W. Zhang, and B. Yakobson, “Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2,” Phys. Rev. B87, 155304 (2013).
  34. V. Ryzhii, I. Semenikhin, M. Ryzhii, D. Svintsov, V. Vyurkov, A. Satou, and T. Otsuji, “Double injection in graphene p-i-n structures,” J. Appl. Phys.113, 244505 (2013). [CrossRef]
  35. R. Rengel and M. J. Martin, “Diffusion coefficient, correlation function, and power spectral density of velocity fluctuations in monolayer graphene,” J. Appl. Phys.114, 143702 (2013). [CrossRef]
  36. M. Ryzhii and V. Ryzhii, “Injection and population inversion in electrically induced p-n junction in graphene with split gates,” Jpn. J. Appl. Phys.46, L151–L153 (2007). [CrossRef]
  37. M. Ryzhii and V. Ryzhii, “”Population inversion in optically and electrically pumped graphene,” Physica E40, 317–320 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited