OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31604–31614

Blu-ray disk lens as the objective of a miniaturized two-photon fluorescence microscope

Hsiang-Yu Chung, Wei-Cheng Kuo, Yu-Hsiang Cheng, Che-Hang Yu, Shih-Hsuan Chia, Cheng-Yung Lin, Jie-Shin Chen, Huai-Jen Tsai, Andrey B. Fedotov, Anatoly A. Ivanov, Aleksei M. Zheltikov, and Chi-Kuang Sun  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 31604-31614 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2267 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we examine the performance of a Blu-ray disk (BD) aspheric lens as the objective of a miniaturized scanning nonlinear optical microscope. By combining a single 2D micro-electro mechanical system (MEMS) mirror as the scanner and with different tube lens pairs, the field of view (FOV) of the studied microscope varies from 59 μm × 93 μm up to 178 μm × 280 μm, while the corresponding lateral resolution varies from 0.6 μm to 2 μm for two-photon fluorescence (2PF) signals. With a 34/s video frame rate, in vivo dynamic observation of zebrafish heartbeat through 2PF of the excited green fluorescence protein (GFP) is demonstrated.

© 2013 Optical Society of America

OCIS Codes
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(220.4830) Optical design and fabrication : Systems design
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: August 30, 2013
Revised Manuscript: November 1, 2013
Manuscript Accepted: November 2, 2013
Published: December 13, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Hsiang-Yu Chung, Wei-Cheng Kuo, Yu-Hsiang Cheng, Che-Hang Yu, Shih-Hsuan Chia, Cheng-Yung Lin, Jie-Shin Chen, Huai-Jen Tsai, Andrey B. Fedotov, Anatoly A. Ivanov, Aleksei M. Zheltikov, and Chi-Kuang Sun, "Blu-ray disk lens as the objective of a miniaturized two-photon fluorescence microscope," Opt. Express 21, 31604-31614 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J.50(4), 693–712 (1986). [CrossRef] [PubMed]
  3. D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express5(8), 169–175 (1999). [CrossRef] [PubMed]
  4. T.-H. Tsai, C.-Y. Lin, H. J. Tsai, S. Y. Chen, S. P. Tai, K. H. Lin, and C.-K. Sun, “Biomolecular imaging based on far-red fluorescent protein with a high two-photon excitation action cross section,” Opt. Lett.31(7), 930–932 (2006). [CrossRef] [PubMed]
  5. S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, “In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy,” IEEE J. Sel. Top. Quantum Electron.16(3), 478–492 (2010). [CrossRef]
  6. M.-R. Tsai, S.-Y. Chen, D.-B. Shieh, P.-J. Lou, and C.-K. Sun, “In vivo optical virtual biopsy of human oral mucosa with harmonic generation microscopy,” Biomed. Opt. Express2(8), 2317–2328 (2011). [CrossRef] [PubMed]
  7. J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett.28(11), 902–904 (2003). [CrossRef] [PubMed]
  8. J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol.92(5), 3121–3133 (2004). [CrossRef] [PubMed]
  9. R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods6(7), 511–512 (2009). [CrossRef] [PubMed]
  10. R. P. Barretto and M. J. Schnitzer, “In vivo optical microendoscopy for imaging cells lying deep within live tissue,” in Imaging: A Laboratory Manual (Cold Spring Harbor Laboratory, 2011).
  11. M. Chen, C. Xu, and W. W. Webb, “Endoscope lens with dual fields of view and resolutions for multiphoton imaging,” Opt. Lett.35(16), 2735–2737 (2010). [CrossRef] [PubMed]
  12. F. Bortoletto, C. Bonoli, P. Panizzolo, C. D. Ciubotaru, and F. Mammano, “Multiphoton fluorescence microscopy with GRIN objective aberration correction by low order adaptive optics,” PLoS ONE6(7), e22321 (2011). [CrossRef] [PubMed]
  13. T. A. Murray and M. J. Levene, “Singlet gradient index lens for deep in vivo multiphoton microscopy,” J. Biomed. Opt.17(2), 021106 (2012). [CrossRef] [PubMed]
  14. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun.188(5–6), 267–273 (2001). [CrossRef]
  15. W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett.29(21), 2521–2523 (2004). [CrossRef] [PubMed]
  16. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett.30(17), 2272–2274 (2005). [CrossRef] [PubMed]
  17. R. Le Harzic, M. Weinigel, I. Riemann, K. König, and B. Messerschmidt, “Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens,” Opt. Express16(25), 20588–20596 (2008). [CrossRef] [PubMed]
  18. R. Le Harzic, I. Riemann, M. Weinigel, K. König, and B. Messerschmidt, “Rigid and high-numerical-aperture two-photon fluorescence endoscope,” Appl. Opt.48(18), 3396–3400 (2009). [CrossRef] [PubMed]
  19. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express16(8), 5556–5564 (2008). [CrossRef] [PubMed]
  20. D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U. S. A.108(43), 17598–17603 (2011). [CrossRef] [PubMed]
  21. H. Bao, J. Allen, R. Pattie, R. Vance, and M. Gu, “Fast handheld two-photon fluorescence microendoscope with a 475 μm × 475 μm field of view for in vivo imaging,” Opt. Lett.33(12), 1333–1335 (2008). [CrossRef] [PubMed]
  22. Y. Zhao, H. Nakamura, and R. J. Gordon, “Development of a versatile two-photon endoscope for biological imaging,” Biomed. Opt. Express1(4), 1159–1172 (2010). [CrossRef] [PubMed]
  23. M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett.31(8), 1076–1078 (2006). [CrossRef] [PubMed]
  24. Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express17(10), 7907–7915 (2009). [CrossRef] [PubMed]
  25. Y. Wu, J. Xi, M. J. Cobb, and X. Li, “Scanning fiber-optic nonlinear endomicroscopy with miniature aspherical compound lens and multimode fiber collector,” Opt. Lett.34(7), 953–955 (2009). [CrossRef] [PubMed]
  26. Y. Wu, Y. Zhang, J. Xi, M.-J. Li, and X. Li, “Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation,” J. Biomed. Opt.15(6), 060506 (2010). [CrossRef] [PubMed]
  27. K. Murari, Y. Zhang, S. Li, Y. Chen, M.-J. Li, and X. Li, “Compensation-free, all-fiber-optic, two-photon endomicroscopy at 1.55 μm,” Opt. Lett.36(7), 1299–1301 (2011). [CrossRef] [PubMed]
  28. W. Liang, K. Murari, Y. Zhang, Y. Chen, M.-J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt.17(2), 021108 (2012). [CrossRef] [PubMed]
  29. J. Xi, Y. Chen, Y. Zhang, K. Murari, M.-J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett.37(3), 362–364 (2012). [CrossRef] [PubMed]
  30. Y. Zhang, K. Murari, W. Liang, J. Xi, Y. Chen, M.-J. Li, Z. Bhujwalla, K.Glunte, and X. Li, “Scanning nonlinear endomicroscopy technology for intrinsic imaging of biological tissues,” in CLEO: Applications and Technology, paper ATh5A.1 (2012).
  31. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett.23(1), 52–54 (1998). [CrossRef] [PubMed]
  32. D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, “Delivery of nanojoule femtosecond pulses through large-core microstructured fibers,” Opt. Lett.27(17), 1513–1515 (2002). [CrossRef] [PubMed]
  33. F. Helmchen, D. W. Tank, and W. Denk, “Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core,” Appl. Opt.41(15), 2930–2934 (2002). [CrossRef] [PubMed]
  34. W. Göbel, A. Nimmerjahn, and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber,” Opt. Lett.29(11), 1285–1287 (2004). [CrossRef] [PubMed]
  35. C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express16(13), 9996–10005 (2008). [CrossRef] [PubMed]
  36. C. L. Hoy, O. Ferhanoğlu, M. Yildirim, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe,” Opt. Express19(11), 10536–10552 (2011). [CrossRef] [PubMed]
  37. T.-M. Liu, M.-C. Chan, I.-H. Chen, S.-H. Chia, and C.-K. Sun, “Miniaturized multiphoton microscope with a 24Hz frame-rate,” Opt. Express16(14), 10501–10506 (2008). [CrossRef] [PubMed]
  38. S.-H. Chia, C.-H. Yu, C.-H. Lin, N.-C. Cheng, T.-M. Liu, M.-C. Chan, I.-H. Chen, and C.-K. Sun, “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express18(16), 17382–17391 (2010). [CrossRef] [PubMed]
  39. E. D. Cocker, R. P. J. Barretto, J. C. Jung, B. A. Flusberg, H. Ra, O. Solgaard, and M. J. Schnitzer, “A portable two-photon fluorescence microendoscope based on a two-dimensional scanning mirror,” in Optical MEMS and Nanophotonics, 2007 IEEE/LEOS International Conference, 6–7 (2007).
  40. W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett.34(15), 2309–2311 (2009). [CrossRef] [PubMed]
  41. L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, “Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror,” Opt. Express14(3), 1027–1032 (2006). [CrossRef] [PubMed]
  42. L. Fu, A. Jain, C. Cranfield, H. Xie, and M. Gu, “Three-dimensional nonlinear optical endoscopy,” J. Biomed. Opt.12(4), 040501 (2007). [CrossRef] [PubMed]
  43. W. Jung, S. Tang, D. T. McCormic, T. Xie, Y.-C. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy,” Opt. Lett.33(12), 1324–1326 (2008). [CrossRef] [PubMed]
  44. S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009). [CrossRef] [PubMed]
  45. http://panasonic.net/blu-ray/technology/story01/
  46. G. F. Marshall and G. E. Stutz, Handbook of Optical and Laser Scanning, 2nd ed. (CRC, 2012).
  47. J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).
  48. S.-P. Tai, M.-C. Chan, T.-H. Tsai, S.-H. Guol, L.-J. Chen, and C.-K. Sun, “Two-photon fluorescence microscope with a hollow-core photonic crystal fiber,” Opt. Express12(25), 6122–6128 (2004). [CrossRef] [PubMed]
  49. S. W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing (California Technical, 1997).
  50. M. Offroy, Y. Roggo, and L. Duponchel, “Increasing the spatial resolution of near infrared chemical images (NIR-CI): The super-resolution paradigm applied to pharmaceutical products,” Chemom. Intell. Lab. Syst.117, 183–188 (2012). [CrossRef]
  51. R. F. Fischer and B. Tadic, Optical System Design (McGtaw-Hill, 2000).
  52. D. C. Brown, “Decentering distortion of lenses,” Photogramm. Eng.32(3), 444–462 (1966).
  53. J. P. de Villiers, F. W. Leuschner, and R. Geldenhuys, “Centi-pixel accurate real-time inverse distortion correction,” in International Symposium on Optomechatronic Technologies, SPIE (2008). [CrossRef]
  54. C.-Y. Lin, P.-H. Yang, C.-L. Kao, H.-I. Huang, and H.-J. Tsai, “Transgenic zebrafish eggs containing bactericidal peptide is a novel food supplement enhancing resistance to pathogenic infection of fish,” Fish Shellfish Immunol.28(3), 419–427 (2010). [CrossRef] [PubMed]
  55. C.-J. Huang, C.-T. Tu, C.-D. Hsiao, F.-J. Hsieh, and H.-J. Tsai, “Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish,” Dev. Dyn.228(1), 30–40 (2003). [CrossRef] [PubMed]
  56. E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, T. Porwol, and H. Acker, “Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP,” J. Microsc.217(3), 200–204 (2005). [CrossRef] [PubMed]
  57. M. Westerfield, The Zebrafish Book, 3rd ed. (University of Oregon, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3984 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited