OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31615–31622

High quality factor GaAs-based photonic crystal microcavities by epitaxial re-growth

Ivan Prieto, Jesús Herranz, Lukasz Wewior, Yolanda González, Benito Alén, Luisa González, and Pablo A. Postigo  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 31615-31622 (2013)
http://dx.doi.org/10.1364/OE.21.031615


View Full Text Article

Enhanced HTML    Acrobat PDF (2222 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate L7 photonic crystal microcavities (PCMs) fabricated by epitaxial re-growth of GaAs pre-patterned substrates, containing InAs quantum dots. The resulting PCMs show hexagonal shaped nano-holes due to the development of preferential crystallographic facets during the re-growth step. Through a careful control of the fabrication processes, we demonstrate that the photonic modes are preserved throughout the process. The quality factor (Q) of the photonic modes in the re-grown PCMs strongly depends on the relative orientation between photonic lattice and crystallographic directions. The optical modes of the re-grown PCMs preserve the linear polarization and, for the most favorable orientation, a 36% of the Q measured in PCMs fabricated by the conventional procedure is observed, exhibiting values up to ~6000. The results aim to the future integration of site-controlled QDs with high-Q PCMs for quantum photonics and quantum integrated circuits.

© 2013 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Photonic Crystals

History
Original Manuscript: September 9, 2013
Revised Manuscript: November 7, 2013
Manuscript Accepted: November 11, 2013
Published: December 13, 2013

Citation
Ivan Prieto, Jesús Herranz, Lukasz Wewior, Yolanda González, Benito Alén, Luisa González, and Pablo A. Postigo, "High quality factor GaAs-based photonic crystal microcavities by epitaxial re-growth," Opt. Express 21, 31615-31622 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-31615


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007). [CrossRef] [PubMed]
  2. M. Nomura, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Photonics6, 279–283 (2010).
  3. M. Maragkou, A. K. Nowak, E. Gallardo, H. P. van der Meulen, I. Prieto, L. J. Martínez, P. A. Postigo, and J. M. Calleja, “Controlling the properties of single photon emitters via the Purcell effect,” Phys. Rev. B86(8), 085316 (2012). [CrossRef]
  4. I. J. Luxmoore, E. D. Ahmadi, N. A. Wasley, A. M. Fox, I. A. Tartakovski, A. B. Krysa, and M. S. Skolnick, “Control of spontaneous emission from InP single quantum dots in GaInP photonic crystal nanocavities,” Appl. Phys. Lett.97(18), 181104 (2010). [CrossRef]
  5. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007). [CrossRef]
  6. D. Fattal, K. Inoue, J. Vucković, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett.92(3), 037903 (2004). [CrossRef] [PubMed]
  7. S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaitre, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99(11), 111106 (2011). [CrossRef]
  8. A. L. Grimsmo and S. Parkins, “Cavity-QED simulation of qubit-oscillator dynamics in the ultrastrong-coupling regime,” Phys. Rev. A87(3), 033814 (2013). [CrossRef]
  9. A. Laucht, J. M. Villas-Boas, S. Stobbe, N. Hauke, F. Hofbauer, G. Bohm, P. Lodahl, M. C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B82(7), 075305 (2010). [CrossRef]
  10. A. Faraon, A. Majumdar, H. Kim, P. Petroff, and J. Vucković, “Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity,” Phys. Rev. Lett.104(4), 047402 (2010). [CrossRef] [PubMed]
  11. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81(5), 1110–1113 (1998). [CrossRef]
  12. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005). [CrossRef] [PubMed]
  13. P. Atkinson, M. B. Ward, S. P. Bremner, D. Anderson, T. Farrow, G. A. C. Jones, A. J. Shields, and D. A. Ritchie, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Physica E32(1-2), 21–24 (2006). [CrossRef]
  14. P. Alonso-González, L. González, Y. González, D. Fuster, I. Fernández-Martínez, J. Martín-Sánchez, and L. Abelman, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Nanotechnology18, 1–4 (2007).
  15. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83(20), 4204–4207 (1999). [CrossRef]
  16. A. Imamoğlu, S. Falt, J. Dreiser, G. Fernandez, M. Atature, K. Hennessy, A. Badolato, and D. Gerace, “Coupling quantum dot spins to a photonic crystal nanocavity,” J. Appl. Phys.101(8), 081602 (2007). [CrossRef]
  17. J. Martín-Sánchez, G. Muñoz-Matutano, J. Herranz, J. Canet-Ferrer, B. Alén, Y. González, P. Alonso-González, D. Fuster, L. González, J. Martínez-Pastor, and F. Briones, “Single photon emission from site-controlled InAs quantum dots grown on GaAs(001) patterned substrates,” ACS Nano3(6), 1513–1517 (2009). [CrossRef] [PubMed]
  18. J. S. Smith, P. L. Derry, S. Margalit, and A. Yariv, “High quality molecular beam epitaxial growth on patterned GaAs substrates,” Appl. Phys. Lett.47(7), 712–715 (1985). [CrossRef]
  19. H. Watanabe and T. Baba, “High-efficiency photonic crystal microlaser integrated with a passive waveguide,” Opt. Express16(4), 2694–2698 (2008). [CrossRef] [PubMed]
  20. A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett.11(12), 5387–5390 (2011). [CrossRef] [PubMed]
  21. D. M. Williams, K. M. Groom, B. J. Stevens, D. T. D. Childs, R. J. E. Taylor, S. Khamas, R. A. Hogg, N. Ikeda, and Y. Sugimoto, “Optimisation of coupling between photonic crystal and active elements in an epitaxially regrown GaAs based photonic crystal surface emitting laser,” Jpn. J. Appl. Phys.51(2), 02BG05 (2012). [CrossRef]
  22. G. Subramania, Q. Li, Y. J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, “Gallium nitride based logpile photonic crystals,” Nano Lett.11(11), 4591–4596 (2011). [CrossRef] [PubMed]
  23. E. C. Nelson, N. L. Dias, K. P. Bassett, S. N. Dunham, V. Verma, M. Miyake, P. Wiltzius, J. A. Rogers, J. J. Coleman, X. Li, and P. V. Braun, “Epitaxial growth of three-dimensionally architectured optoelectronic devices,” Nat. Mater.10(9), 676–681 (2011). [PubMed]
  24. M. Arita, S. Ishida, S. Kako, S. Iwamoto, and Y. Arakawa, “AlN air-bridge photonic crystal nanocavities demonstrating high quality factor,” Appl. Phys. Lett.91(5), 051106 (2007). [CrossRef]
  25. D. Néel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, and P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett.98(26), 261106 (2011). [CrossRef]
  26. S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys.95(2), 411–416 (2004). [CrossRef]
  27. L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express17(17), 14993–15000 (2009). [CrossRef] [PubMed]
  28. J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, P. A. Postigo, and J. P. Martínez-Pastor, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express20(7), 7901–7914 (2012). [CrossRef] [PubMed]
  29. K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express17(20), 18178–18183 (2009). [CrossRef] [PubMed]
  30. K. A. Atlasov, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Effect of sidewall passivation in BCl3/N2 inductively coupled plasma etching of two-dimensional GaAs photonic crystals,” J. Vac. Sci. Technol. B27(5), L21–L24 (2009). [CrossRef]
  31. I. Prieto, L. E. Munioz-Camuniez, A. G. Taboada, C. Robles, J. M. Ripalda, and P. A. Postigo, “Fabrication of high quality factor GaAs/InAsSb photonic crystal microcavities by inductively coupled plasma etching and fast wet etching,” J. Vac. Sci. Technol. B (to be published).
  32. A. Khatiri, T. J. Krzyzewski, C. F. McConville, and T. S. Jones, “Atomic hydrogen cleaning of low-index GaAs surfaces,” J. Cryst. Growth282(1-2), 1–6 (2005). [CrossRef]
  33. F. Briones, L. González, and A. Ruiz, “Atomic layer molecular beam epitaxy (Almbe) of III–V compounds: growth modes and applications,” Appl. Phys. A.49, 729–737 (1989). [CrossRef]
  34. X. Q. Shen and T. Nishinaga, “Arsenic pressure dependence of the surface diffusion in molecular beam epitaxy on (111)B-(001) mesa-etched GaAs substrates studied by in situ scanning microprobe reflection high-energy electron diffraction,” Jpn. J. Appl. Phys.32(2), L1117–L1119 (1993). [CrossRef]
  35. S. Koshiba, Y. Nakamura, M. Tsuchiya, H. Noge, H. Kano, Y. Nagamune, T. Noda, and H. Sakaki, “Surface diffusion processes in molecular beam epitaxial growth of GaAs and AlAs as studied on GaAs (001)‐(111)B facet structures,” J. Appl. Phys.76(7), 4138–4144 (1994). [CrossRef]
  36. H. Heidemeyer, C. Müller, and O. G. Schmidt, “Highly ordered arrays of In(Ga)As quantum dots on patterned GaAs (0 0 1) substrates,” J. Cryst. Growth261(4), 444–449 (2004). [CrossRef]
  37. J. Martín-Sánchez, P. Alonso-González, J. Herranz, Y. González, and L. González, “Site-controlled lateral arrangements of InAs quantum dots grown on GaAs(001) patterned substrates by atomic force microscopy local oxidation nanolithography,” Nanotechnology20(12), 125302 (2009). [CrossRef] [PubMed]
  38. A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, “Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness,” Appl. Phys. Lett.86(14), 141101 (2005). [CrossRef]
  39. Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/
  40. J. M. Llorens, I. Prieto, L. E. Munioz-Camuniez, and P. A. Postigo, “Analysis of the strong coupling regime of a quantum well in a photonic crystal microcavity and its polarization dependence studied by the finite-difference time-domain method,” J. Opt. Soc. Am. B30(5), 1222–1231 (2013). [CrossRef]
  41. Z. Yuan, J. W. Haus, and K. Sakoda, “Eigenmode symmetry for simple cubic lattices and the transmission spectra,” Opt. Express3(1), 19–27 (1998). [PubMed]
  42. S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett.87(6), 061107 (2005). [CrossRef]
  43. L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. Lett.73, 235114 (2006).
  44. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express13(5), 1515–1530 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited