OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31632–31645

Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD

Juha Kostamovaara, Jussi Tenhunen, Martin Kögler, Ilkka Nissinen, Jan Nissinen, and Pekka Keränen  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 31632-31645 (2013)
http://dx.doi.org/10.1364/OE.21.031632


View Full Text Article

Enhanced HTML    Acrobat PDF (3305 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A Raman spectrometer technique is described that aims at suppressing the fluorescence background typical of Raman spectra. The sample is excited with a high power (65W), short (300ps) laser pulse and the time position of each of the Raman scattered photons with respect to the excitation is measured with a CMOS SPAD detector and an accurate time-to-digital converter at each spectral point. It is shown by means of measurements performed on an olive oil sample that the fluorescence background can be greatly suppressed if the sample response is recorded only for photons coinciding with the laser pulse. A further correction in the residual fluorescence baseline can be achieved using the measured fluorescence tails at each of the spectral points.

© 2013 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Spectroscopy

History
Original Manuscript: September 17, 2013
Revised Manuscript: November 21, 2013
Manuscript Accepted: December 6, 2013
Published: December 13, 2013

Citation
Juha Kostamovaara, Jussi Tenhunen, Martin Kögler, Ilkka Nissinen, Jan Nissinen, and Pekka Keränen, "Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD," Opt. Express 21, 31632-31645 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-31632


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol.45(2), R1–R59 (2000). [CrossRef]
  2. N. L. Jestel, “Process Raman spectroscopy,” in Process Analytical Technology Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries (Blackwell, 2005), Chap. 5.
  3. R. Hopkins, S. H. Pelfrey, and N. C. Shand, “Short-wave infrared excited spatially offset Raman spectroscopy (SORS) for through-barrier detection,” Analyst137(19), 4408–4410 (2012). [CrossRef]
  4. O. Khalil, “Spectroscopic and clinical aspects of noninvasive glucose measurements,” Clin. Chem.45(2), 165–177 (1999).
  5. P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc.32(12), 983–988 (2001). [CrossRef]
  6. K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn, and M. D. Morris, “Is photobleaching necessary for Raman imaging of bone tissue using a green laser?” Biochim. Biophys. Acta1758(7), 868–873 (2006). [CrossRef]
  7. R. P. Van Duyne, D. L. Jeanmaire, and D. F. Shriver, “Mode-locked laser Raman spectroscopy-a new technique for the rejection of interfering background luminescence signals,” Anal. Chem.46(2), 213–222 (1974). [CrossRef]
  8. D. V. Martyshkin, R. C. Ahuja, A. Kudriavtsev, and S. B. Mirov, “Effective suppression of fluorescence light in Raman measurements using ultrafast time gated charge coupled device camera,” Rev. Sci. Instrum.75(3), 630–635 (2004). [CrossRef]
  9. E. V. Efremov, J. B. Buijs, C. Gooijer, and F. Ariese, “Fluorescence rejection in resonance Raman spectroscopy using a picosecond-gated intensified charge-coupled device camera,” Appl. Spectrosc.61(6), 571–578 (2007). [CrossRef]
  10. D. E. Schwartz, E. Charbon, and K. L. Shepard, “A single-photon avalanche diode array for fluorescence lifetime imaging microscopy,” IEEE J. Solid State Circuits43(11), 2546–2557 (2008). [CrossRef]
  11. I. Nissinen, J. Nissinen, A.-K. Länsman, L. Hallman, A. Kilpelä, J. Kostamovaara, M. Kögler, M. Aikio, and J. Tenhunen, “A sub-ns time-gated CMOS single-photon avalanche diode detector for Raman spectroscopy,” in Proceedings of the European Solid-State Device Research Conference (ESSDRERC) (Institute of Electrical and Electronics Engineers, 2011), pp. 375–378. [CrossRef]
  12. Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024×8 700ps time-gated SPAD line sensor for laser Raman spectroscopy and LIBS in space and rover-based planetary exploration,” in Proceedings of IEEE Conference on Solid-State Circuits (ISSCC) (Institute of Electrical and Electronics Engineers, New York 2013), pp. 110–111.
  13. Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024 x 8, 700-ps time-gated SPAD line sensor for planetary surface exploration with laser Raman spectroscopy and LIBS,” IEEE J. Solid State Circuits49(1), 1–11 (2014).
  14. I. Nissinen, A.-K. Lansman, J. Nissinen, J. Holma, and J. Kostamovaara, “2×(4×)128 time-gated CMOS single photon avalanche diode line detector with 100 ps resolution for Raman spectroscopy,” in Proceedings of the European Solid-State Circuits Conference (ESSCIRC) (Institute of Electrical and Electronics Engineers, 2013), pp. 291–294.
  15. A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology,” Rev. Sci. Instrum.74(7), 3263–3270 (2003). [CrossRef]
  16. L. Pancheri and D. Stoppa, ”Low-noise CMOS single-photon avalanche diodes with 32 ns dead time,” in Proceedings of the European Solid-State Device Research Conference (ESSDRERC) (Institute of Electrical and Electronics Engineers, 2007), pp. 362–365. [CrossRef]
  17. D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J.9(9), 1084–1090 (2009). [CrossRef]
  18. P. Keränen, K. Määttä, and J. Kostamovaara, “A wide range time-to-digital converter with 1ps single-shot precision,” IEEE Trans. Instrum. Meas.60(9), 3162–3172 (2011). [CrossRef]
  19. D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in Proceedings of the European Solid-State Device Research Conference (ESSDRERC) (Institute of Electrical and Electronics Engineers, 2012), pp. 230–233. [CrossRef]
  20. M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging,” Proc. SPIE7780, 77801M (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited